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Chapter 1

STATIC MAXIMAL FLOW

Introduction. The mathematical problem that forms the subject
matter of this chapter, that of determining a maximal steady state flow
from one point to another in a network subject to capacity limitations on
arcs, comes up naturally in the study of transportation or communication
networks. It was posed to the authérs in the spring of 1955 by T. E. Harris,
who, in conjunction with General F. S. Ross (Rtd. ), had formulated a
simplified model of railway traffic flow, and pinpointed this particular
problem as the central one suggested by the model | ]. It was not
long after this until the main result, Theorem 5.1, which we call the max
flow min cut theorem, was conjectured and established [ ] . Later on
A. J. Hoffman called our attention to the fact that this theorem generalizes
the Menger theorem concerning disjunct chains in a linear graph | ].

A number of proofs of the max flow min cut theorem have since
appeared [ ] . The constructive proof given in section 5 is, we believe,
the simplest and most illuminating of the several known to us.

From our point of view, the maximal stea:dy state flow problem is
the most fundamental topic dealt with in this book. It appears as a sub—
problem in the various optimal flow problems discussed in Chapter III,
and the theory developed for it in Chapter I also provides a method of
attack on a number of combinatorial questions, some of which are ex—

amined in Chapter II.
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Sections 1 and 2 discuss networks and flows in networks. There
are many alternative ways of formulating the concept of a flow through
a network; two of these are described in section 2. After introducing
some notation in éection 3, and defining the notion of a cut in section 4,
we proceed to a statement and proof of the max flow min cut theorem in
section 5. Sections 6, 7, 9, 10, 11 amplify and extend this theorem. In
section 8, the construction implicit in its proof is detailed and illustrated.
This construction, which we call the 'labeling process, " forms the basis
for almost all the algorithms presented later in the book. A consequence
of the construction is the integrity fheorem (Theorem 8. 1), which has
been known in connection with similar problems since G. B. Dantzig
pointed it out in 1951 | ]. It is this theorem that makes network flow
theory applicable in certain combinatorial investigations.

Section 12 provides a brief presentation of duality principles for
linear programs. The reader not familiar with linear inequality theory
will probably find this section too brief to be very illuminating, but
excellent discussions are available[ ]. We include it mainly to note
that the max flow min cut theorem is a kind of combinatorial counterpart,
for the special case of the maximal flow problem, of the more general
duality theorem for linear programs [ ].

Section 13 uses the max flow min cut theorem to examine maximal
flow through a network as a function of a pair of individual arc capacities.

The main conclusion here, which may sound empty but isn't, is that any
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two arcs either always reinforce each other or always interfere with

each other [ ].

1. Networks. A directed network or directed linear graph

G = [N; ] consists of a collection N of elements X, ¥, -.., together
with a subset Q of the ordered pairs (x, y) of elements taken from N.

It is assumed throughout that N is a finite set (even though some of the
results generalize), since our interest lies mainly in the construction of
computational procedures. The elements of N are variously called nodes,

vertices, junction points, or points; members of (A are referred to as

arcs, links, branches, or edges. We shall stick to the node—arc terminology

throughout.

A network may be pictured by selecting a point corresponding to
each node x of N and directing an arrow from x to y if the ordered pair
(x, y)isin & . For example, the network shown in Fig. 1.1 consists of
four nodes s, x, y, t and six ares (s, x), (s, y), (x, y), (y, x), (x, t)

and (y, t).

Fig. 1.1
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Such a network is said to be directed, since each arc carries a
specific orientation or direction. Occasionally we shall also consider

undirected networks, for which the set (A consists of unordered pairs of

nodes, or mixed networks, in which some arcs are directed, others not.

These we can of course picture in the same way, omitting arrowheads on
arcs having no orientation. Until something is said to the contrary,
however, each arc of the network will be assumed to have an orientation.
We have not as yet ruled out the possibility of arcs (x, x) leading
from a node x to itself, but for our purposes we may as well do so.
Thus all arcs will be supposed to be of the form (x, y) with x # y. Also,
while the existence of at most one arc (x, y) has been postulated, the
notion of a network frequently allows multiple arcs joining x to y. Again,
for most of the problems we shall consider, this added generality gains
nothing, and so we shall continue to think of at most one arc leading from
any node to another, unless an explicit statement is made to the contrary.
Let Xipooey X (n > 2) be a sequence of distinct nodes of a net—

work such that (xi, xi+1) is an arc, for eachi =1, ... y n — 1. Then

the sequence of nodes and arcs
(1. 1) X1 (xl, x2), Xgy +ory (xn-l’ xn), X

is called a chain; it leads from X to X . Sometimes, for emphasis, we

call (1. 1) a directed chain. If the definition of a chain is altered by

stipulating that X, = Xp then the displayed sequence is a directed cycle.




For example, in the network of Fig. 1, the chain s, (8, x), x, (x, t), t
leads from s to t; this network contains just one directed cycle, namely,

x, (x, yh v, &, x), x.
Let Xpp ooey X be a sequence of distinct nodes having the property

that either (xi, xi+1) or (xi+1’ xi) is an arc, foreachi =1, ..., n - 1
Singling out, for each i, one of these two possibilities, we call the re—

sulting sequence of nodes and arcs a path from x, to X - Thus a path

1

differs from a chain by allowing the possibility of traversing an arc in a

direction opposite to its orientation in going from x, to x . (For undirected

1

networks, the two notions coincide.) Arcs (xi, X, +1) that belong to the
path are forward arcs of the path; the 6thers are reverse arcs. For
example, the sequence s, (s, y), y, (x, y), %, (x, t), t is a path from s
to t in Fig. 1. 1; it contains the forward arcs (s, y), (x, t) and the reverse

arc (x, y). If, in the definition of path, we stipulate that x, = X then

1

the resulting sequence of nodes and arcs is a cycle.
We may shorten the notation and refer unambiguously to the chain

x X - Occasionally we shall also refer to the path x X

'URREE. 'URREE.

then it is to be understood that some selection of arcs has tacitly been
made.

Given a network [N; @], one can form a node-arc incidence

matrix as follows. List the nodes of the network vertically, say, the
arcs horizontally, and record, in the column corresponding to arc (x, ¥),
a 1in the row corresponding to node x, a —1 in the row corresponding to

y, and zeros elsewhere. For example, the network of Fig. 1.1 has

AN



incidence matrix

(5,x) (s,y) (x,5) (y,x) (x,t) (,t)

s [ 1 1 0 0 0 0
x |-1 0 1 a1 1 0
y o -1 4 1 0 1
t | o 0 0 o -1 -1

Clearly, all information about the structure of a network is embodied in
its node—arc incidence matrix.
If x ¢ N, we let A(x) ("after x'') denote the set of all y ¢ N such

that (x, y) ¢ A :
(1.2) Ax) = {y e N | (x, y) ¢ A}.

Similarly, we let B(x) ("'before x'') denote the set of all y ¢ N such that

(y, x) € a:
(1.3) B(x) ={y e N| (y, x) e A}.
For example, in the network of Fig. 1.1,

A(s) = {x, y}, B(s) = g (the empty set).
We shall on occasion require some other notions concerning

networks. These will be introduced as needed.



2. Flows in networks. Given a network G = [N; Q] , suppose

that each arc (x, y) ¢ @ has associated with it a nonnegative real number
c(x, y). We call c(x, y) the capacity of the arc (x, y); it may be thought of
intuitively as representing the maximal amount of some commodity that

can arrive at y from x per unit time. The function ¢ from @G to nonnegative

reals is the capacity function. (Sometimes it will be convenient to allow

infinite arc capacities also. )

The fundamental notion underlying most of the topics treated sub—
sequently is that of a static or steady state flow through a network, which
we now proceed to formulate. (Since dynamic flows will not be discussed
until Chapter III, the qualifying phrase 'static" or '"steady state' will
usually be omitted. )

Let s and t be two distinguished nodes of N. A static flow of value

v from s to t in [N; L] is a function f from @ to nonnegative reals that

satisfies the linear equations and inequalities

v X = B,

(2. 1) z f(x, y) — z f(y, x) =< o x ¥ s, t,
ye A(x) ye B(x) v  x =t
(2.2) f(x, y) < elx, y) all (x, y)e Q.

We call s the source, t the sink, and other nodes intermediate. Thus if

the net flow out 9_{ x is defined to be



2 f(x, y) — 2 fly, x),

yeA(x) ye B(x)

then the equations (2. 1) may be verbalized by saying that the net flow out
of the source is v, the net flow out of the sink is —v (or the net flow into
the sink is v), whereas the net flow out of an intermediate node is zero.
An equation of the latter kind will, on occasion, be referred to as a

conservation equation.

Sometimes, to avoid ambiguity, we shall denote the value of a
flow f by v(f). Notice that a flow f from s to t of value v is a flow from t
to 8 of value ~v.

An example of a flow from 8 to t is shown in Fig. 2.1, where it is
assumed that arc capacities are sufficiently large so that none are

violated. The value of this flow is 3.

Fig. 2.1

Given a flow f, we refer to f(x, y) as the arc flow f(x, y) or the
flow in arc (x, y). Each arc flow f(x, y) occurs in precisely two equations

of (2. 1), and has a coefficient 1 in the equation corresponding to node x,



a coefficient —1 in the equation corresponding to node y. In other words,
the coefficient matrix of equations (2. 1), apart from the column correspond—
ing to v, is the node—arc incidence matrix of the network. (By adding the
special arc (t, s) to the network, allowihg multiple arcs if necessary, a |
nonnegative flow value v can be thought of as the 'return flow' in (t, s),
and all equations taken as conservation equations. )

A fe\Q observations. There is no question concerning the existence
of flows, since f = 0, v = 0 satisfy (2. 1) and (2. 2). Also, while we have
assumed that 0. may be a subset of the ordered pairs (x, y), x #y, with
the capacity function ¢ nonnegative on @, we could extend Q to all ordered
pairs by taking ¢ = 0 outside of @, or we could assume strict positivity
of c by deleting from Q arcs having zero capacity. Finally, the set of
equations (2. 1) is redundant, since adding the rows of its coefficient
matrix produces the zero vector. Thus we could omit any one of the
equations without loss of generality. We prefer to retain the one—one
correspondence between equations and nodes, however.

The static maximal flow problem is that of maximizing the variable
v subject to the flow constraints (2. 1) and (2. 2). Before proceeding to
this problem, it is worthwhile to point out an alternative formulation that
is informative and will be useful in later contexts. This might be termed
the arc—chain notion of a flow from s to t.

Suppose that A . Am is an enumeration of the arcs of a

P o

network, the arc Ai having capacity C(Ai” and let C ey Cn be a list

A
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of all directed chains from s to t. Form the m by n incidence matrix

(aij) of arcs vs. chains by defining

1 if Aie C,
(2.3) a . = J
1 0 otherwise.
Now let h be a function from the set of chains Cl’ cey Cn to nonnegative

reals that satisfies the inequalities
n

(2.4) Y 8, BC)) < <4y,
i=1

[
"
P

-

-
8

We refer to h as a flow from s to t in arc—chain form, and call h(Cj) a

chain flow or the flow in chain C The value of h is

§
n

(2.5) v(h) = z h(Cj)-
i=1

When we need to distinguish the two notions of a flow from s to t thus far

introduced, we shall call a function f from the set of arcs to nonnegative

reals that satisfies (2. 1) and (2. 2) for some v, a flow from s to t in

node—arc form. (There will usually be no need for the distinction, since

we shall work almost exclusively with node—arc flows after this
section.)
Let us explore the relationship between these two formulations of

the intuitive notion of a flow. Suppose that x X, is a list of the

o
nodes, and let (bki)’ k =1, ..., i=1 ..., m be the node—arc



incidence matrix introduced earlier. Thus

1 ifAi = (:ﬁ(, Y),
{2.6) bki =4 —1 if Ai = (y, xk),
0 otherwise.

Then
1 u‘Ai = (xk, y) and Aie Cj’
bkiaij =< —1 if Ai = (y, xk) and Ai € Cj’
0 otherwise,

and it follows that

m 1if X, = B,
(2.7) Z b, 3 * -lifx =t
i=1 0 otherwise.

If h is a flow from s to t in arc—chain form, and if we define

n
(2.8) f(A,) = Z 8,5 B(C,), i=1,..., m,
i=1

then f is a flow from s to t in node-arc form, and v(f) = v(h). For by

(2.4) and (2.8),
£(A)) < e(a),

and by (2.7),



I?

m m n
jg b, f(4)) = jg jg by; 8;; h(C))
i=1 i=1  j=1

n m
) Z (Z Py aij) h(C,)

j=1 i=1

z h(Cj), 1ka = B,
i=1

n

. —z hc),  ix =t
j=1

o, otherwise.

"

But tgese are precisely equations (2. 1) for the function f and

v = h(C,).
S ey

j=1

On the other hand, we can start with a flow f in node-arc form
having value v and obtain from it a flow h in arc—hain form having value
v(h) > v. Intuitively, the reason the inequality now appears is that the
node—arc formulation permits flow along chains f_rom t to s.

There are various ways of obtaining such an arc—chéin flow h
from a given node—arc flow f. One way is as follows. Define
(2.9) h(C,) = min f}LAih =1 ..,n

Aie Cj

where
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1
R = -— = « o + .
(2.10) fj(Ai) f(Ai), § aip h(Cp), j=1, ,n+1
p=1
In words, look at the first chain Cl’ reduce f1 = f by as much as
possible (retaining nonnegativity of arc flows) on arcs of CI; this yields
f.. The process is then repeated with C 2 and f 99 and so on until all

2

chains have been examined. It follows that fj +1 is a node—arc flow from

J
8 to t having value v(f j+1) = v - 2 h(C ), since
p=l
z bki j+1 i z b f(A)—z 2 b i h(Cp),
i=1 i=1 i=1 p=1

J
v - z h(Cp), if x =8,

i
-<-v+z h(Cp), Cifx =t

p=l

0, otherwise.
L .

Moreover, fj+1(Ai) < fj(Ai) all Ai’ and fj+1(Ai) = 0 for some A1 € CJ..

Hence the node—arc flow fn +1 vanishes on some arc of every chain from

s tot. This implies that v(fn +1) < 0, as the following lemma shows.

Lemma 2.1. Iff is a node-arc flow from s to t having value




v(f) > 0, then there is a chain from s totsuch thatf > 0 onall arcs

of this chain.

Proof. Let X be the set of nodes defined recursively by the rules
(a) 8¢ X,
(b) if x e X, and if f(x, y) > 0, theny ¢ X.

We assert that t ¢ X. For suppose not. Then, summing the equations (2. 1)

over x ¢ X, and noting cancellations, we have

v(f) = 2 [f(x, y) - £(y, x)] .

xe X
yiX

But by (b), if (x, y) is an arc with x ¢ X, y ¢ X, then f(x, y) = 0. This and
the last displayed equation contradict v(f) > 0. Thust ¢ X. But for any x ¢ X,
the definition of X shows that there is a chain from s to x such that
f > 0onarcs of this chain. Hence there is a chain from s to t with
this property.
It follows from the lemma that the value of fn +1 is nonpositive,

that is

n
vig L) =v - z h(Cp) < 0.
p=1

Consequently v(h) 2 v. This proves

Theorem 2.2. If h is an arc—chain flow from s tot, thenf

defined by (2.8) is a node-arc flow from s to t and v(f) = v(h). On the




other hand, if f is a node-arc flow from s to t, then h defined by (2. 9)

and (2. 10) is an arc—chain flow from s to t, and v(h) > v(f).

A consequence of Theorem 2.2 is that it is immaterial whether
the maximal flow problem is formulated in terms of the node—arc incidence
matrix or the arc—chain incidence matrix. Thus, since arcs of the form
(x, 8) or (t, x) can be deleted from @ without changing the list of chains
from s to t, we may always suppose in either formulation of the maximal
flow problem that all source arcs point out from the source, and all sink
arcs point into the sink. (For such networks, one has v(h) = v(f) in the
second part of Theorem 2. 2 as well as the first part.)

A function h defined from f as in (2. 9) and (2. 10) will be termed

a chain decomposition of f. A chain decomposition of f will, in general,

depend on the ordering of the chains. Thus, for example, if in Fig. 1.1

we take f = 1 on all arcs, and take C, = (s, x, t), C, = (s, y, 1),

1
C3 = (s, %, y, t), C4 = (s, y, x, t), then h(Cl) = h(Cz) = 1,
h(C3) = h(C4) = 0. But examining the chains in reverse order would
lead to h(C4) = h(Cs) = 1, h(Cz) = h(Cl) = 0. |

From the computational point of view, one would certainly suppose
the node-arc formulation to be preferable for most networks, since the
number of chains from s to t is likely to be large compared to the number
of nodes or the number of arcs. A computing procedure that required as

a first step the enumeration of all chains from s to t would be of little

value. There are less obvious reasons why the node—arc formulation is

/5



to be preferred from the theoretical point of view as well.

3. Notation. To simplify the notation, we adopt the following
conventions. If X and Y are subsets of N, let (X, Y) denote the set of
all arcs that lead from x ¢ X toy ¢ Y; and, for any function g from @

to reals, let

(3.1) Z _g(x, y) = g(X, Y).
(x,y)e (X, Y)
Similarly, when dealing with a function h defined on the nodes

of N, we put

(3.2) Z h(x) = h(X).
xe X

Set unions, intersections, and differences will be denoted by
U, N, and —, respectively. Thus X U Y is the set of nodes in X or in
Y, X N Y the set of nodes in both X and Y, and X — Y the set of nodes in
X but not in Y. We use € for set inclusion, and c for proper inclusion.
Complements of sets will be denoted by barring the appropriate symbol.
For instance, the complement of X in Nis X = N — X.

Thus, if X, ¥, Z C N, then

(3.3) gX, YU 2Z) = g(X, V) + g(X, 2) - g(X, YN 2Z),



(3.4) g(Y U Z, X) = g(Y, X) + gz, X) — gl¥Yn z, X)

Hence if Y and Z are disjoint,
giX, YUZ) = g(X, Y) + g(X, 2),

glYV z, X) = g(Y, X) + g(Z, X).
Notice that

(B(x), x) = (N, x),

(x, A(x)) = (x, N),

and

g(N, X) = z g(N, x) = 2 g(B(x), x),
xe X xe X

gX, N) = z glx, N) = Z glx, A(x)).
xe X xe X

Later on (Chapter II) we shall use the notation |X| to denote the

number of elements in an arbitrary set X.

4. Cuts. Prdgress toward a solution of the maximal network
flow problem is made with the recognition of the importance of certain
subsets of arcs, which we shall call cuts. A cut C’in [N; @] separating
s and t is a set of arcs (X, X) where s ¢ X, t ¢ X. The capacity of the
cut (X, X)is c(X, X).

For example, the set of arcs C = {(s, y), (%, y), (x, t)} with



X = {s, x}, is a cut in the network of Fig. 1.1 separating s and t.
Notice that any chain from s to t must contain some arc of every
cut (X, X). For let x

.-y, X beachainwithx, =5, x =t. Since
' “n n

- 1

X, ¢ X, X e 3(", thereisanxi(l <ic< n)withxie X, x,

i+1 ¢ X. Hence

the arc (xi, xi+1) is a member of the cut (X, X). It follows that if all arcs
of a cut were deleted from the network, there would be no chain from s
to t and the maximal flow value for the new network would be zero.

Since a cut blocks all chains from s to t, it is intuitively clear
(and indeed obvious in the arc—chain version of the problem) that the
value v of a flow f cannot exceed the capacity of any cut, a fact that we

now prove from (2. 1) and (2. 2).

Lemma 4.1. Let fbe a flow fromstot in a network [N; 4],

and let f have value v. If (X, X) is a cut separating s and t, then

(4.1) v = {(X, X) - £(X, X) < c(X, X).

Proof. The equality of (4. 1) was actually proved in Lemma 2. 1.
We reprove it here, using the notation introduced in the preceding
section.

Since { is a flow, f satisfies the equations

f(s, N) — £(N, 8) = v,
f(x, N) — f(N, x) = 0, x # 8, t,

f(t, N) — £(N, t) = —v.



Now sum these equations over x ¢ X. Sincese Xandte i, the result is

v = z (f(x, N) — £f(N, x)) = f(X, N) — {f(N, X).
xe X

Writing N = X U X in this equality yields
v = f(X, XUX)-fX U X, X) = (X, X)+(X, X)-1(X, X)-{X, X),

thus verifying the equality in (4. 1). Since £(X, X) > 0 and {(X, X) < c(X, X)
by virtue of (2. 2), the inequality of (4. 1) follows immediately.
In words, the equality of (4. 1) states that the value of a flow from

s to t is equal to the net flow across any cut separating s and t.

5. Maximal flow. We are now in a position to state and prove the

fundamental result concerning maximal network flow.

Theorem 5. 1. (Max flow min cut theorem [ ]1). For any

network the maximal flow value from s to t is equal to the minimal cut

capacity over cuts separating s and t.

Before proving Theorem 5. 1, we illustrate it with an example.
Consider the network of Fig. 1.1 with capacity function ¢ and flow { as
indicated in Fig. 5. 1 below, c(x, y) being the first member of the pair

of numbers written adjacent to arc (x, y), and f(x, y) the second.



<.

We assert that t ¢ X. For suppose not. It then follows from the

definition of X that there is a path from s to t, say

8 =x1, x2,..., xn st‘,

having the property that for all forward arcs (xl, X, +1) of the path,

)

f(xi, xi+1) < c(xi, X1

whereas for all reverse arcs (xi+1’ xi) of the path,
f(xi+1, xi) > 0.

Let El be the minimum of c — f taken over all forward arcs of the path,

82 the minimum of-f taken over all reverse arcs, and let € = min (81, EZ) > 0.

Now alter the flow f as follows: increase f by £ on all forward arcs of the

path, and decrease f by € on all reverse arcs. It is easily checked that

the new function thus defined is a flow from s to t having value v + &

But then f is not maximal, contrary to our assumption, and thus t ¢ X.
Consequently (X, X) is a cut separating s and t. Moreover, from

the definition of X, it follows that

f(x, x) = clx, x) for (x, x) ¢ (X, X),

f(x, x) = 0 for (x, x) ¢ (X, X),

gince otherwise x would be in X. Thus



We assert that t ¢ X. For suppose not. It then follows from the

definition of X that there is a path from s to t, say

B = X x =4,

p Xgrooer X

having the property that for all forward arcs (x X +1) of the path,
f(xi, xi+1) < c(xi, xi+1),

whereas for all reverse arcs (x xi) of the path,

i+1’

f(xi+1’ xi) > 0.

Let El be the minimum of ¢ —f taken over all forward arcs of the path,

Ez the minimum of f taken over all reverse arcs, and let € = min (81, 62) > 0.

Now alter the flow f as follows: increase f by & on all forward arcs of the

path, and decrease f by £ on all reverse arcs. It is easily checked that

the new function thus defined is a flow from s to t having value v + .

But then f is not maximal, contrary to our assumption, and thus t e X.
Consequently (X, X) is a cut separating s and t. Moreover, from

the definition of X, it follows that

f(x, x) = c(x, x) for (x, x) ¢ (X, X),

f(x, x) = 0 for (x, x) ¢ (X, X),

since otherwise x would be in X. Thus



f(x, X) = X, X), £(X, X) =0,

go that equality holds in 4. 1.

Several corollaries can be gleaned from Lemma 4.1, Theorem
5.1, and its proof.

We shall call a path from 8 to t a flow a.ugmenting path with
respect to a flow f provided that f < con forward arcs of the path, and

£ > 0 onreverse 8rcs of the path. Then we have

Corollary 5.2. A flow f is maximal _1__£ and only g there is no

flow au@entigg path with respect to {.

Proof. If f is maximal, then clearly no flow augmenting path
exists. Suppose€, conversely, that no flow augmenting path exists. Then
the set X defined recursively using f as in the proof of Theorem 5.1
cannot contain the sink t. Hence, 88 in the proof of Theorem 5. 1, (X, X)
is a cut separating 6 and t having capacity equal to the value of f. Con—
sequently f is maximal.

Corollary 5.2 is of fundamental importanc::e in the study of network
flows. It says, in essence, that in order to increase the value of a flow,
it suffices to look for improvements of a very restricted kind.

We say that an arc (x, y)is saturated with respect to a flow fif

f(x, y) = clx, y) and is flowless with respect to f if f(x, y) = 0. Thus an

arc that is both saturated and flowless has z€ro capacity. Corollary 5.3
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characterizes a minimal cut in terms of these notions.

Corollary 5.3. A cut (X, X) is minimal if and only if every

maximal flow f saturates all arcs of (X, X) whereas all arcs of X, X)

are flowless with respect to f.

Using Corollary 5. 3 it is easy to prove

Corollary 5.4. Let (X, X) and (Y, Y) be minimal cuts. Then

(XUY, XU Y)and (XN ¥, X NY)are also minimal cuts.

The following theorem shows that the minimal cut (X, X) singled
out in the proof of Theorem 5. 1 does not, in actuality, depend on the

maximal flow {.

Theorem 5.5. Let (Y, Y) be any minimal cut, let f be a maximal

flow, and let (X, X) be the minimal cut defined relative to f in the proof

of Theorem 5.1. Then X C Y.

Proof. Suppose that X is not included in Y. Then XN Y C X,
and (X NY, X N Y) is a minimal cut by Corollar:} 5.4. Let x be a node
in X that is not in X N Y. Since xe¢ Xand x F s, there is a path from
Bto X, By 8 = Xy, Xg - X =% such that each forward arc of the
path is unsaturated with respect to f, while each reverse arc carries
positive flow. But since s ¢ XNYand xe X N Y, there is a pair X5 ¥4

(1 <i< k) such that x, ¢ XxXny, X1 e XNY. If (xi, xi+1) is a forward



arc of the path, then f(xi, xi+1) < c(xi, xi+1), contradicting Corollary
5.3. Similarly if (xi +7’ xi) is a reverse arc of the path, Corollary 5.3
is contradicted. Hence X C Y.

Thus if (Xi’ i_i), i=1 ..., m, are all the minimal cuts
separating source and sink, the set X defined relative to a particular
maximal flow in the proof of Theorem 5.1 is the intersection of all Xi
and hence does not depend on the selection of the flow.

Although the minimal cut (X, X) was picked out in the proof of
Theorem 5. 1 by a recursive definition of the source set X, symmetrically
we could have generated a minimal cut (Y, Y) by defining its sink set

Y in terms of a maximal flow f as follows:

(a') teY;
(') ify ¢ Y and f(x, y) < c(x, y), then x ¢ Y;

ifye Y and fly, x) > 0, thenx¢ Y.

Equivalently, one can think of reversing all arc orientations and
arc flows, interchanging source and sink so that t becomes the source,
8 the sink, and then use the definition given in the proof of Theorem 5.1
to construct Y. Again, although its definition is made relative to a
particular maximal flow, the set Y does not actually depend on the
selection, since Y is the intersection of the sink sets X, of all minimal

i
cuts (X,, i_i)‘



Using both definitions, we can state a criterion for uniqueness

of a minimal cut.

Theorem 5.6. Let X be the set of nodes defined in the proof of

Theorem 5. 1, let Y be the set defined above, and assume that c is strictly

positive. The minimal cut (X, X) is unique if and only if (X, X) = (Y, Y).

Proof. We must show that if (X, X) = (Y, Y), and if (Z, Z) is
any minimal cut, then (X, X) = (Z, Z).

First note that if (X, X) = (Y, Y), then both equal (X, Y). For
X € Y by Theorem 5.5, hence (X, ?) c (Y, _Y_). On the other hand, if
(U, v) e (X, X) = (Y, Y), thenue Xandve Y, 8o (u, v)e (X, Y).

For the arbitrary minimal cut (Z, -Z.), we have, again by Theorem
5.5 and its analogue for (Y, Y), that X € Z, Y € Z. Thus (X, Y) €(Z, Y)C
(Z, Z). Hence c(X, Y) < ¢(Z, Z). Now if (X, Y) C(Z, Z), then either
some arcs of (Z, Z) have zero capacity, contradicting our assumption
c > 0, or c(X, Y) < c(z, Z), contradicting the minimality of (Z, Z).
Thus (X, X) = (X, Y) = (2, Z).

Notice that Theorem 5. 6 is not valid if the assumptionc > 0 is
relaxed toc > 0. For instance, in the network shown in Fig. 5. 1 below,

X = {8}, Y = {t}, and (X, X) = (Y, ¥) = (s, t).



O——O

0

O—0

Fig. 5.2

However, (Z, Z) with Z = {s, x} is another minimal cut that contains

both arcs.

6. Disconnecting sets and cuts. We have characterized cuts as

sets of arcs of the form (X, X) with 5 ¢ X, te X, and have noted that a
cut blocks all chains from s to t. Thus if we call a set of arcs a dis—

connecting set if it has the chain blocking property, then a cut is a

disconnecting set. The converse is not necessarily true, however. For
example, the set of all arcs in a network is a disconnecting set, but may
not be a cut.

That every disconnecting set contains a cut can be seen easily as
follows. Let.% denote the disconnecting set, and define a subset X of

nodes by the rule

(a) B ¢ X;

(b) if xe Xand (x, y) ¢ Z, theny ¢ X.

It is clear that t ¢ X and (X, X) ¢ &. Notice that if 0O is a proper



disconnecting set, that is, a disconnecting set whose proper subsets are
not disconnecting, then (X, X) = £ . Thus every proper disconnecting
set is a cut. The converse may not hold, though. For example, in Fig.
5.1, the cut (X, X) with X = {s, x} is not a proper disconnecting set.

We may summarize the discussion thus far by saying (1) the class
of proper disconnecting sets is included in the class of cuts, which, in
turn, is included in the class of disconnecting sets, and that each of these
inclusions may be proper; (2) every disconnecting set contains a cut. It
follows that the notion of a cut could be replaced by either that of disconnecting
set or proper disconnecting set in the statement of the max flow min cut
theorem.

We have chosen to focus attention on cuts rather than disconnecting
sets because the former are more convenient to work with when dealing with
flows in node—arc form; the latter are convenient for an arc—chain formula—
tion of the maximal flow problem. (See [ ], where a proof of Theorem
5.1 is given that uses the arc—chain formulation. )

Notice that, in any case, restricting atterition to proper discon—
necting sets is as far as one can go in narrowing the class of sets of arcs
that require consideration, since every proper disconnecting set of a
network has minimal capacity for some capacity function: for instance,
clx, y) = 1if (x, y) ¢ ﬂ, c(x, y) = © otherwise, singles out the proper

disconnecting set J as the unique minimal cut.

A"



7. Multiple sources and sinks. Although the assumption has been

that the network has a single source and single sink, it is easy to see that
the situation in which there are multiple sources and sinks, with flow
permitted from any source to any sink, presents nothing new, since the
adjunction of two new nodes and several arcs to the multiple source,
multiple sink network reduces the problem to the case of a single source
and sink.

In more detail, suppose that the nodes N of a network [N; 4] are

partitioned into three sets:

S (the set of sources),
T  (the set of sinks),

R (the set of intermediate nodes),

and consider the problem of finding a maximal flow from S to T.
A flow from S to T may be thought of as a real valued function f

defined on @ that satisfies

(7.1) f(x, N)— f(N, x) = 0 for x e' R,
(7.2) 0 < f(x, y) < elx, y) for (x, y)e @,
the flow value being

(7.3) v = £(S, N) - £(N, S).

[



Extend [N; @] to a network [N*; @*] by adjoining two nodes u,
v and all arcs (u, S), (T, v), and extend the capacity function c defined

on A to c* defined on A* by

c*(u, x) = o, Xxe S,
c*(x, v) = o, xe T,
c*(x, y) = clx, yi, (x, y)e Q.

Thus the restriction f of a flow f* from u to v in [N*; @'] isa
flow from Sto T in [N; 2] . Vice versa, a flow f from S to T in [N; @]

can be extended to a flow £* from u to v in [N*; A*) by defining

f*(u, x) = f(x, N) = f(N, x), x¢ S,
f*(x, v) = £(N, x) — f(x, N), x¢ T,

f*(x, y) = £(x, y), otherwise.

Consequently the maximal flow problem from Sto T in [N; Q] is
equivalent to a single source, single sink problem in the extended
network.

Relevant cuts for the case of many source;-s S and sinks T are
those separating S and T: that is, a set of arcs (X, X) with S € X,
TC X. Or, in terms of disconnecting sets, the appropriate notion would
be a set of arcs that blocks all chains from S to T. The max flow min
cut theorem and its corollaries, as well as the other theorems of section

5, remain valid, mutatis mutandis, as can be seen either from the



equivalent extended problem or by making slight changes in the proofs
throughout.

The situation in which there are several sources and sinks, but
in which certain sources can ''ship'’ only to certain sinks, is distinctly
different, though. For such a problem, which might be thought of in
terms of the flow of several commodities, the maximal flow value can be
less than the minimal disconnecting set capacity. Here a disconnecting
set means a collection of arcs that blocks all chains from sources to
corresponding sinks. For example, consider the network shown in Fig.
1? B B3 1 t2, t3. Each arc has unit

capacity. Assume thats,t (i = 1, 2, 3) are the source and sink for
i i ) b

7.1 with sources s and sinks t
commodity i. Then the maximal flow value is 3/2, obtained by sending
a half unit of commodity i along the unique chain from 8, to ti' However,

the arcs (x, y) and (y, z) are a minimal disconnecting set having capacity 2.



8. The labeling method for solving maximal flow problems.

Under mild restrictions on the capacity function, the proof of the max
flow min cut theorem given in section 5 provides a simple and efficient
algorithm for constructing a maximal flow and minimal cut in a
network [ ].

The algorithm may be started with the zero flow. The computation
then progresses by a sequence of ''labelings'' (Routine A below), each of
which either results in a flow of higher value (Routine B below) or terminates
with the conclusion that the present flow is maximal.

To ensure termination, it will be assumed that the capacity
function c is inte.gral valued. This is not an important restriction
computationally, since a problem with rational arc capacities can be
reduced to the case of integral capacities by clearing fractions, a.nd of
course, for computational purposes, confining attention to rational
numbers is really no restriction.

Given an integral flow f, we proceed to assign labels to nodes of
the network, a label having one of the forms (x*, € ) or (x~, €), where
x ¢ N and € is a positive integer or ©, according to the rules delineated
in Routine A.

During Routine A, a node is considered to be in one of three
states: unlabeled, labeled and scanned, or labeled and unscanned.

Initially all nodes are unlabeled.

Cr



Routine A (labeling process). First the source s receives the
label (-, £(s) = ). (The source is now labeled and unscanned; all other
nodes are unlabeled.) In general, select any labeled, unscanned node x.

+

Suppose it is labeled (z , €(x)). To all nodes y that are unlabeled, and such

that f(x, y) < c(x, y), assign the label (x+, €(y)), where
(8.1) €(y) = min [E(x), c(x, y) — f(x, y)].

(Such y are now labeled and unscanned.) To all nodes y that are now

unlabeled, and such that f(y, x) > 0, assign the label (x , €(y)), where

8.2) é(y) = min [Ex), f(y, x)] .

(Such y are now labeled and unscanned and x is now labeled and scanned. )
Repeat the general step until either the sink t is labeled and unscanned,
or until no more labels can be assigned and the sink is unlabeled. In the
former case, go to Routine B; in the latter case, terminate.

+
Routine B (flow change). The sink t has been labeled (y , £(t)).

If t is labeled (y+, £(t)), replace f(y, t) by f(y, t) + &(t); if t is labeled

(v , €(t), replace f(t, y) by f(t, y) — E(t). In either case, next turn
attention to node y. In general, if y is labeled (x+, €(y)), replace f(x, y) by
f(x, y) + E(t), and if labeled (x , €(y)), replace f(y, x) by f(y, x) — &(t),
and go on to node x. Stop the flow change when the source s is reached,

discard the old labels, and go back to Routine A.



The labeling process is a systematic search for a path from s to
t al-ong which the flow may be increased (Corollary 5.2). Enough informa-—
tion is carried along in the labels so that if the sink is labeled (henceforth
we term this case breakthrough), the resulting flow change along the path
can be made readily. If, on the other hand, Routine A ends and the sink

has not been labeled (nonbreakthrough), the flow is maximal and the set of

arcs leading from labeled to unlabeled nodes is a minimal cut, since the
labeled nodes correspond to the set X defined in the proof of Theorem 5. 1.
A main reason underlying the computational efficiency of the
labeling process is that once a node is labeled and scanned it can be
ignored for the remainder of the process. Labeling a node x corresponds
to locating a path from s to x that can be the initial segment of a flow
augmenting path. While there may be many such paths from s to x,

finding one suffices.

If the flow f is integral and Routine A results in breakthrough,
then the flow change é£(t) of Routine B, being the minimum of positive
integers, is a positive integer. Hence if the coxﬁputation is initiated with
an integral flow, each successive flow is integral. Consequently the
algorithm is finite, since the flow value increases by at least one unit
with each occurrence of breakthrough; upon termination, a maximal
flow has been constructed that is integral. Although this fact is a trivial

consequence of the construction, the fact itself is important and will be
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used time and again in the solution of combinatorial problems. We

therefore state it as a theorem.

Theorem 8. 1 (Integrity theorem). If the capacity function c is

integral valued, there exists a maximal flow f that is also integral

valued.

The following numerical example illustrates the use of the labeling

method in constructing a maximal flow.

Example. Let the given network be that of Fig. 1.1 with arc
capacities and initial flow as indicated in Fig. 8.1 below, the pair

c(x, y), f(x, y) being written in that order adjacent to arc (x, y).

Fig. 8.1

Start Routine A by assigning s the label (-, =), see Fig. 8.2.
+ +
From s, label y with (s , min(3, ©)) = (s, 3), thus completing the
labeling from s. From y, x can be labeled (y+, 1) (or (y , 1)), and is

the only unlabeled node that can be labeled from y. Again select a labeled,



unscanned node (x is the only such), and continue assigning labels. This
time breakthrough occurs: the sink t can be labeled (x+, 1). This locates
a flow augmenting path, found by backtracking from the sink according

to the directions given in the labels, along which a flow change of

€(t) = 1 can be made. Here the path is the chain s, y, x, t. The new
flow of value 2 is shown in Fig. 8. 3.

Now discard the old labels and repeat the labeling process. This
time the labels shown in Fig. 8. 3 are obtained. Again breakthrough has
resulted and a flow improvement of £(t) = 1 can be made along the path
s, (s,y), ¥, (x, ¥), x, (x, t), t, yielding the flow shown in Fig. 8.4.

Repetition of Routine A now results in nonbreakthrough, the
labeled set of nodes being those shown in Fig. 8.4. Thus the flow of
Fig. 8.4 is maximal and a minimal cut consists of the arcs (s, x), (y, x),
and (y, t).

Labeling backward from the sink by rules corresponding to (a'),

(b') of section 5 locates the same cut, and hence by Theorem 5.6 this is

the unique minimal cut separating s and t.
(y*, 1)




Fig. 8.4

We conclude this section with an example indicating that the
labeling process might fail to terminate if arc capacities are irrational.
Specifically, the example shows that if the proceés is interpreted broadly
enough to permit the selection of any flow augmenting path at each stage
of the computation, then finite termination may not occur when arc
capacities are irrational.

Before describing this example, we make one definition which will

be helpful in the description. If [N; @] is a network with capacity function




c, and if f is a flow from 8 to t in [N; ], then c(x, y) — f(x, y) is the

residual capacity of arc (x, y) with respect to f.

Now consider the recursion

a =3 —a .
n+2 n n+l

This recursion has a solution a = rn, wherer = (-1 + J5)/2 < 1.
(- o]

Thus the series z a converges to some sum S. We construct a directed
n=1

network with four '"special arcs"

A1 = (xl, .Yl),
Ay = By o)
Ag = (xg3 Y3)
A4 = (x4, y4),

and the additional arcs (yi, yj), (xi, yj), (yi, xj), for i £ j, together
with source arcs (s, xi) and sink arcs (yi, t). The four special arcs have

capacities ay a8, 8, 8 respectively; all other arcs have capacity S.

2’ 2

Step 1. Find a chain from s to t that includes, from among the

special arcs, only Al’ and impose a 0 units of flow in this chain. For

example, take the chain s, Xp Yy t. (The special arcs now have residual

capacities 0, a , respectively.)

r %2 %2



Inductive step. Suppose the special arcs A'l, A'z, A'S, A"1 (some

A4) have residual capacities 0, 8,8 181

rearrangement of A Az, A

1’ 3,
Find a chain from s to t that includes, from among the special arcs,

'

2

For example, the chain s, x;, y,, Xj, yé, t will do. (The special arcs

only A_ and A ;3, and impose a additional units of flow along this chain.

+1

now have residual capacities 0, a_— a 0, & .1 ) Next

= a
n+l n+2’

find a path from s to t that contains A.2 as a forward arc, A and Aé as
reverse arcs, the latter being the only reverse arcs of the path, and

impose an additional flow of a units along this path. For example,

+2
the path s, x:,a, y‘2, y'l, xi, yé, xé, y;, t containing the reverse arcs

‘1, x'l), (yé, x'3) will do. (The special arcs now have residual capacities

)

a a a .
n+2’ 0 n+2’ n+l

i i + .
The inductive step increases the flow value by a 1 Y42 "2,

Hence no non—special arc is ever required to carry more than

o0

z an = S units of flow in repeating the inductive step. The process
n=l

converges to a flow having value S, whereas the maximal flow value for

this network is 48S.

9. Lower bounds on arc flows. Although lower bounds of zero

have been assumed on all arc flows, there is no real necessity for this

assumption in constructing maximal flows. If the conditions

3¢



(9. 1) 0 < f(x,5) < clx, y)

are replaced by

(9. 2) 1(x, y) < flx, y) < clx, y),

where £ is a given real valued function defined on arcs of & that satisfies
(9. 3) 0 < 1(x, y) < clx, y),

the labeling process can be varied to handle this situation provided one
has an initial flow to start the computation. There may be no function

f satisfying the equations (2. 1) and the inequalities (9.2) (e.g., take 2 = c¢
in the example of the preceding section), but assuming that these con—
straints are compatible for a given integral valued £ and c, and that an
initial f satisfying them has been found, the only change in the labeling
rules for constructing a maximal flow is the following. If x has been
labeled (zi, €), then y may be labeled [x , min(&, f(y, x) — £(y, x))]
provided f(y, x) > £(y, x).

It is also easy to see that the analogue of Theorem 5. 1 becomes

Theorem 9.1. If there is a function f satisfying (2.1) and (8. 2)

for some number v, then the maximal value of v subject to these

constraints is equal to the minimum of c(X, X) — 1(X, X) taken over all

X €N withs ¢ X, t ¢ X.

LS



On the other hand, still assuming the existence of a function {
satisfying (2. 1) and (9. 2) for some v, the minimal value of v maybe
found in a similar way: if x is labeled (zi, ¢)and if f(x, y) > 1(x, y),
attach the label [x~, min(e, f(x, y) — £(x, y))] toy; or if f(y, x) < cly, x),
assign y the label [x¥, min(c, cly, x) - f(y, x))] .

Here the analogue of Theorem 5.1 is

Theorem 9.2. If there is a function f satisfying (2. 1) and (8. 2)

for some number v, the minimal value of v subject to these constraints

is equal to the maximum of £(X, X) — c(X, X)taken over all X € N

withse X, te X.

The questions that still remain are those of determining condi-
tions under which the constraints (2. 1) and (9. 2) are compatible, and of
constructing a function f satisfying them when these conditions hold. We
postpone these questions for the moment. They and similar questions

will be taken up in Chapter II.

3¢



10. Flows in undirected and mixed networks. Let us suppose that

the network is undirected or mixed, and that each arc has a nonnegative
flow capacity. If the arc (x, y) is undirected with capacity c(x, y), we

interpret this to mean that

(10. 1) f(x, y) < clx, y),
fw’ X) < C(x, y))

f(x, y):(y, x) = 0.

That is, f(x, y) is the flow from x to y in (x, y), and the arc (x, y) has
a flow capacity c(x, y) in either direction, but flow is permitted in only
one of the two directions.
For example, one might think of a network of city streets,
each street having a traffic flow capacity, and ask the question: how
should one—way signs be put up on streets not already oriented in order
to permit the largest traffic flow from some set of points to another?
At first glance, it might appear that this problem would involve

examination of a large number of maximal flow problems obtained by

Ut
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orienting the network in various ways. But a moment's thought shows
that the problem can be solved by considering only one directed network:
namely, that obtained by replacing each undirected arc with a pair of
oppositely directed arcs, each having capacity equal to the old arc. The
reason for this is that, given any solution f, v of the flow constraints

(2. 1) and (2. 2), one can produce a solution ', v in which
£'(x, y) - f'ty, x) = 0

by taking

(10.2) £'(x, y) = max (0, f(x, y) — fly, x)).

Thus, since it is clear that the maximal flow value for any
specific orientation of the given network is no greater than the maximal
flow value obtained by replacing each undirected arc by a pair of directed
arcs, allowing both orientations for each undirected arc solves the
original problem of maximizing v subject to the flow equations (2. 1},
capacity constraints (2. 2) for directed arcs, and constraints (10. 1) for

undirected arcs.

11. Node capacities and other extensions. Other kinds of

inequality constraints in addition to bounds on arc flows can be imposed
without altering the character of the maximal flow problem. For instance,

suppose that each node x has a flow capacity k(x) > 0, and that it is



desired to find a maximal flow from s to t subject to both arc and node
capacities.

More explicitly, let us assume that all source arcs are directed
from the source and all sink arcs into the sink, and that it is desired to

maximize f(s, N) subject to

(11.1) f(x, N) — f(N, x) = 0, x ¥ 8, t,

(11.2) 0 < f(x, y) < clx, y), (x, y) ¢ Q,

(11. 3) f(x, N) < kix), x ¥t

(11.4) £(N, t) < kit). |

This problem can be reduced to the arc capacity case by a simple
device. Define a new network [N*; @*] from [N; Q] as follows. To
each x ¢ N we make correspond two nodes x', x'' ¢ N if (x, y)e O
then (x', y") ¢ A" in addition, (x", x') ¢ Q" for each x ¢ N. The (arc)

capacity function defined on &* is
(11.5) c*ix', y") = clx, y), (x, y)e 4,
(11.6) c*(x", x') = k(x), x ¢ N.

Thus, for example, if the given network [N; 4] is that of Fig.

11. 1, the network [N*; "] is shown in Fig. 11.2.



Fig. 1.1 Fig. 11.2

In effect, each node x has been split into two parts, a "left" part
x" and a 'right" part x', so that all arcs entering x now enter its left
part, whereas all arcs leaving x now leave its right part. The capacity
k(x) is then imposed as an arc capacity on the new arc leading from the
left part of x to its right part.

Thus any function f satisfying (11. 1) — (11. 4), that is, any flow
from 5 to t in [N; @] that does not exceed the node capacities, yields an

equivalent flow f* from 8" to t'in [N*; @"] by defining

(11.7) (', y") = f(x, y), x, y) ¢ @,
(11.8) £ (x", x') = £(x, N), x ¥t
(11.9) £ (", t') = £(N, t),

and conversely.
If the notion of a disconnecting set is extended to include nodes

as well as arcs, the analogue of the max flow min cut theorem asserts



that the maximal flow value is equal to the capacity of a disconnecting set
of nodes and arcs having minimal capacity.

In a similar way, moré general kinds of constraints on the flow
out of or into node x can be reduced to the case of arc capacities by en—
larging the network. For example, suppose that the nodes of the set A(x)

are put into subsets

(11. 10) Ayx), ooy AL ()

with the proviso that

(11.11) Ai(x) n Aj(x) ¥4 =)Ai(x)gAj(x) or Aj(x) c Ai(x),
and assume, in addition to the flow equations,
(11.12) f(x, Ai(x)) < ki(x), i=1 ..., mx).

Constraints of the form (11.12), under the assumption (11. 11), can be
handled as indicated schematically in Fig. 11.3 and Fig. 11.4 for a
single node x.

Constraints of a similar kind on flow into x can be reduced to arc
constraints by enlarging the network in an analogous fashion.

Notice that inequality constraints (11.2), (11.3), (11.4) are a

special case of (11.12) and similar constraints on flow into x:

(11. 13) f(Bj(x), x) < hj(x), i=1, ..., nx).



Al(x) g Aa(x)

Az(x)

} A 4(x)

Fig. 11.3

Fig. 11.4

If we refer to each set (x, Ai(x)) and (Bj(x), x) as an elementary
set of arcs, and extend the notion of a disconnecting set of arcs to say

that a collection 8 of elementary sets is a disconnecting collection if



each chain from s to t has an arc in common with some elementary set
contained in @, it can be shown that the maximal flow value from s to
t is equal to the minimal blocking capacity (under the assumption (11. 11)

and a similar assumption on B (x)).

J

12. Linear programming and duality principles. The problem of

finding a maximal flow through a network, whether stated in node-arc or
in arc—hain form, is one of extremizing a linear function subject to
linear equations and linear inequalities. Such a problem is called a
linear programming problem, and various methods of computing answers
to linear programs are known. The method that is in general use is

G. B. Dantzig's simplex algorithm, around which a sizeable literature
has already grown up. It is not our purpose here to discuss the theory
of linear inequalities or algorithms for solving general linear programs,
since this book is devoted, for the most part, to special kinds of linear
programs that arise in transportation, communication, or certain kinds
of combinatorial problems, and to a presentation of special algorithms
for solving these linear programs. We would be negligent, however, if
some mention were not made of linear programming duality principles
in connection with these problems.

Associated with every linear programming problem in variables

NN
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is a dua) program obtained by assigning multipliers A o xm to the
individual constraints of (12. 1) and forming the program
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(12.4)
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(12.5) N e N unrestricted in sign; A\, ., .-, », 20



(12.6) minimizeb A, + ... + b X\ .
11 m m

Here the aij’ bi’ and cj are given real numbers.
The matrix of the constraints (12.4) is the transpose of that of
(12.1). Equalities of (12. 4) correspond to unrestricted variables Was coes Wy,

and inequalities to nonnegative variables w W - The multipliers

L+1 70

that correspond to equations of (12. 1) are

or dual variables A, ..., A

1’

unrestricted in sign, whereas \

k
WRTIRERY Xm’ corresponding to inequalities
of (12. 1), are nonnegative.

Observe that if the dual problem (12. 4), (12.5), and (12.6) is

written in the form of the primal problem (12. 1), (12.2), (12.3) by

multiplying each of the constraints of (12.4) by —1 and maximizing —z bixi,
then the dual of (12.4), (12.5), (12.6) is (12.1), (12.2), (12. 3). In other
words, the dual of the dual is the primal.

The constraints of the primal problem are said to be feasible if
there is a vector w = (w URRET wn) satisfying them; w is then called a

feasible vector, and the primal problem is termed feasible. A feasible

vector w that maximizes the linear form z c jwj.is called optimal.
Analogous language is used for the dual problem.

Thus a linear programming problem either has

(a) optimal (and hence feasible) vectors;
(b) feasible vectors, but no optimal vector;

{c) no feasible vectors.



4

The fundamental theorem of linear programming, the duality theorem
first proved by Gale, Kuhn, and Tucker [ ] , relates the way these
situations can occur in a pair of dual programs, and asserts equality
between the maximum in the primal and the minimum in the dual: if
case (a) holds for the primal, then (a) holds for its dual and the maximum
value of z cJ.wJ. is equal to the minimum value of 2‘ b, if (b) holds
for the primal, then (c) holds for the dual; if (c) holds for the primal,
either (b) or (c) is valid for the dual.

That the maximum value -of z c .'lwfl is no greater than the minimum
of z biki if both primal and dual have feasible vectors is easily seen.

Letting w and \ be feasible in their respective programs, it follows that

(12.7) z cw < z Z )‘iaiij
i
since unrestricted variables Wj correspond to equations z )‘iai j = C §
i
and nonnegative variables wj to inequalities Z > c

%y 2
i

Thus equality holds in (12. 7) if and only if

(12.8) 2 )‘iaij > cj=--> wj s (.
i
Similarly,
(12.9) z )‘iaijwj < z bi)‘i’
j i i



since the )’i that are unrestricted in sign correspond to equations

z a . w, = bi’ whereas nonnegative A\, correspond to inequalities

ij i
i
z a . w, <b,.

ij j — i
J

Thus equality holds in (12. 9) if and only if
(12. 10) A, > 0 =—>z a,.,w. =b,.
i ij 3 i

J

Consequently

(12.11) z cjwj < z bixi,

equality holding if and only if (12.8) and (12. 10) are valid. The major
content of the duality theorem is the assertion that if case (a) holds for
the primal, it also holds for the dual, and that there are then feasible
solutions to primal and dual problems that satisfy the optimality criteria
(12. 8) and (12.10).

Our purpose in giving this sketchy résumé of linear programming
duality theory is twofold. First, we shall note that the max flow min cut
theorem provides a proof of the duality theorem for the special case of
maximal flow problems. Second, although most of the algorithms to be
presented subsequently do not actually require appeal to the duality theorem,

they were motivated by duality considerations, and we want to feel free



to invoke such considerations where convenient.

If we take the constraints of the maximal flow problem in the node—
arc form and assign multipliers »(x) to the equations (2. 1), multipliers
¥(x, y) to the capacity inequalities (2. 2), then, recalling that the coefficient
matrix of the equations is (apart from the column corresponding to the
variable v) the node-arc incidence matrix of the network, it follows that

the dual has constraints

—x(s) + x(t) > 1,
(12.12) r(x) — x(y) + y(x, y) > 0, all (x, y),

y(x, y) > 0, all (x, y),
subject to which the form

(12.13) ) etx, 9y y)
(74

is to be minimized. In (12.12), the first constraint comes from the
v—column of the primal problem, the second from the (x, y)—column. The
dual variables »(x) are unrestricted in sign since‘they correspond to
equations, whereas the variables y(x, y) correspond to inequalities and
are consequently nonnegative.

If (X, X) is & minimal cut separating s and t, it can be checked

that an optimal solution to the dual problem is provided by taking



0 for x ¢ X,
(12. 14) x(x) = _
1 for xe¢ X,
1 for (x, y) ¢ (X, X),
(12. 15) y(x, y) =

0 otherwise.

This follows since (12. 14) and (12. 15) define a feasible solution to the

dual that produces equality between the primal form v and dual form (12. 13).

Or one can check the optimality properties (12. 8) and (12. 10).

In particular, the dual of the maximal flow problem always has an
integral solution. It can be shown, in fact, that all extreme points of the
convex polyhedral set defined by setting #(s) = 0in (12. 12), which cor—
responds to dropping the (redundant) source equation in the primal problem,
are of the form given in (12. 14) and (12. 15) for some X with 8 ¢ X. Using
this fact, the max flow min cut theorem can be deduced from the duality

theorem [ 1.

13. Maximal flow value as a function of two arc capacities. For

a given network [N; Q] with specified sources S and sinks T, the value

v of a maximal flow from S to T is solely a function of the individual arc

capacities. Indeed, if A = {AI’ Ay ooy Am} and Ai has capacity
c(Ai), we know that
(13.1) v = min 2 c(A

cea Ay

AieC

s

Vg



the minimum being taken over all cuts ¢ separating S and T. The theorems
and proofs of this section provide insight into the behavior of v considered
as a function of two arc capacities, everything else being held fixed. Both
theorems and proofs are due to Shapley | ].

It will be convenient to allow infinite capacities for the two arcs in
question, and hence infinite v. However, the capacities of other arcs are
assumed finite.

Let Vi (¢) denote the maximal flow value when the capacity C(Ai)
has been replaced by the nonnegative variable £. Similarly, ;ij(g’ n ) denotes

the maximal flow value when C(Ai) and c(A,) have been replaced by non—

J

negative variables £ and n. It is a consequence of (13. 1) that
(13.2) v,(€) = min[v,(0) + €, v,(=)].

In more detail, if € is less than the critical capacity

(13. 3) g*cﬂw)uﬂmn

the arc Ai is a member of every minimal cut, whereas for £ > £, the

arc Ai is in no minimal cut. Here g* may be either zero or infinite. If

the critical capacity g' is strictly positive, and if c(Ai) = t* thereisa

minimal cut containing A, and a minimal cut not containing Ai'

i
Two applications of (13. 2) yield

(13.4) Fij(g, n) = min[-v-ij(o, 0) + £ + 1, Trij(o, w) + ¢, 3ij(°°, 0) +m, \713-(”, x)] .



Thus the piecewise linear function Vij(g, n) divides the nonnegative
quadrant of the £ — n plane into at most four open convex regions in each
of which it is linear, together with certain boundary lines and vertices.

We label these regions R R R R, respectively: R11 is the region

11’ 7"10° 01 00

in which the minimum in (13. 4) i assumed uniquely by ;ij

RIO the region in which the minimum is assumed uniquely by ?i.(o, ©) + ¢,

and so on. Thus the subscmpts identxfying the region are the values of

(0, 0) + € + 1,

the partial derivatives —E—i , ——-1 in that region. Notice that for

any point of R both arcs A, and A, are in every minimal cut; in R1 0

1 i b
Ai is in every minimal cut while A, is in no minimal cut; in R o1 A, is in

h| i
no minimal cut and Aj is in every minimal cut; in ROO neither Ai nor A i

is in any minimal cut.
The common boundaries of each pair of regions appear as in Fig.

13. 1:;

10 00 ROO

10 R00

11 Ros

Fig. 13.1

The equations of these boundary lines are respectively



(13.5) vy

3
n

(0, ©) — ?r'ij(o, 0) (R, - R_,)

J 10 11
(13.6) £ = ?ij(eo, 0) - ?ij(o, 0) (R, =Ry
(13.7) & +n = $ij(°°, ®)— ?r'ij(o, 0) (R, — Ry
(13.8) & —1n = ?ij(oo, 0) — Gij(o, ) (R, — Rgy)
(13.9) ¢ = Vij(oo, ©)— ?ij(o, ) (R, — Ryg)
(13. 10) n = 613.(«», ) — ;ij(w, 0) Ry, — Rgy):

Here ?ij(o, ) = © means that region R__ is empty, ;ij(w’ 0) = © means

10

that R01 is empty, and ;ij(w’ ©) = o means that ROO is empty.
In order to determine the different ways in which the nonnegative
quadrant of the £ — n plane can be partitioned by the four regions, a case

classification can be made using

g - -V + v
(13.11) Pyj vij(°°, ©) vij(O, ©) vij(°°, 0) vij(O, 0)
as follows:

(a) > 0 (including pij = ),

pij

(b) pij = 0 or pij indeterminate (0 — ),

(c) pij < 0.



Using (13.5) — (13. 10), it follows that if all four regions are present in
each case, the resulting configurations for the £ — n nonnegative quadrant

then appear as in Fig. 13. 2:

00
10 00
10

01

11 01
Ri1

(a) (b) (c)

Fig. 13.2

Moreover, if pij = oo, the configuration is a degenerate form of Fig. 13. 2(a)
in which R 00 does not appear, while if p ij is indeterminate, various de—
generate forms of Fig. 13. 2(b) occur. Of course, other kinds of degeneracy
may be present, e.g. R10 may be empty in Fig. 13. 2(c) by virtue of

;ij(w’ ®) — Fij(o, ©) = 0, and so on. But the cogﬁgurations of Fig. 13.2
are exclusive and comprehend all possibilities. Notice that there is

never more than one diagonal boundary segment, that is, an R11 - Ro 0
contact precludes an R 10~ R 01 contact, and that in cases (a) and (¢), a
diagonal segment is always present. For future reference, we also note

that a point (£ %, n*)ona diagonal segment is critical in the following

sense: if C(Ai) is fixed at £*, then n” is the critical capacity of Aj’ whereas



if c(Aj) is fixed at n*, then £* is the critical capacity of Ai' Thus at

such a point (g*, n*) with ¢* > 0, n * > 0, there is a minimal cut con—

taining Ai’ a minimal cut not containing Ai’ and similarly for A g
The foregoing case classification provides the background for a
genei'al statement about the difference quotient

v +h n+k)—v.(t +h n)—v
(13.12) q = ij lg‘k ! i

(€, n + h) + vij(ﬁ, n)

for the function ?ij(g, n). Here qij is of course a function of h and k as
well as £ and n, and is well definedonly if € +h > 0,n +k > 0, and

hk £ 0.

Theorem 13.1. For all rectangles (£, n), (€ + h, n), (§, n + k),

(€ + h, n +k)inthe £ — n nonnegative quadrant, the difference quotient

q; 18 of one sign.

Proof. Assume without loss of generality thath > 0,k > 0,
and consider the described rectangle. It cannot enclose more than one
diagonal piece from the boundary configuration. If it encloses none, then
9 § = 0. If the piece enclosed has positive slope, then qi:l > 0 (in fact,
9y j is equal to the length of the intercepted diagonal divided by v2 hk).

On the other hand, if the piece enclosed has negative slope, then qij < 0.

The following corollary, which relates the sign of qij to that of

the constant pij definedby (13.5), is immediate.



Corollary 13.2. (a) If pij > 0 (including pij = o), then qij is

sometimes > 0, and never < 0; (b) i_fpij = 0or _i_fpij is indeterminate

(0 — ), then qij ig identically zero; (c) if pij < 0, then q\1j is sometimes

< 0, and never > 0.

Theorem 13.1 can be verbalized in a somewhat more intuitive
way. Roughly speaking, a positive qij means that the arcs Ai and A i com-—
plement or reinforce each other, whereas a negative q § means that they
compete or interfere with each other. Thus the theorem asserts that
any pair of arcs in a network (having fixed capacities for all other arcs)
consistently reinforce or interfere with each other. In general, the
manner in which two arcs interact depends on the capacities of the other
arcs, as well as the relative positions of the two arcs in the network.

For example, consider the network of Fig. 13. 3:

Fig. 13.3

Here Pyp = 1, but removal of the arc A3 (or reducing its capacity to
zero) yields Pjp =~ 1. However, in certain cases, the interaction—type

of a pair of arcs is determined solély by their relative positions,



independently of the capacity values, as the following theorem and

corollary show.

Theorem 13.3. (i) If the terminal node of Ai is the initial node

of Aj’ then 9,4 > 0. (i) If A, and Aj have the same initial node, then

is a source, and the terminal node

9 < 0. (iii) I the initial node of A,

g_f_Aj _i_s a sink, then qij > 0.

Proof. (i) Consider a minimal cut C = (X, X) in the network. If

the common node x of A, and Aj is in X, then A, is not in C. Ifxisin

X, then A:l is not in C. Thus Ry

minimal cut, is empty. Hence qij > 0.

in which both Ai and A § belong to every

(ii) Ignoring the trivial case in which no diagonal segment appears
in the configuration, let (¢*, 7 ¥) be an arbitrary point on the diagonal

having positive coordinates. Then (¢*, n ¥*) is critical, and hence there is

X,)

= (X X,

a minimal cut C T i'l) containing A, and a minimal cut c,

{ and A : have the same initial node, the

minimal cut C = X, N X,, 3('1 U 3{'2) contains both A, and Aj. The

capacity of C corresponding to the point (g*, n*) is of course ?ij(g*, n*),

containing Aj. Thus, since A

and consequently the capacity of C corresponding to the variable point

(8, m) {8V, (6%, n") + € — ¢ + n —n". Thus
- - * * *
vlj(g, n) s vi](g ’ n‘) + £ - g +tn—mn,

and in particular,



;u.(o, 0) < ;ij(g*’ Y — g* - 'q*.
By (13. 4) equality holds here, and so

- * * .o * »*

i

It follows that (£ * n%) is on the boundary of R,,- Since (¢*, n") was an
arbitrary point on the diagonal having positive coordinates, the boundary
configuration is that of Fig. 13. 2(c), and hence qij < 0.

(iii) The proof here is similar to that of (ii). Again we may ignore
the trivial case corresponding to Fig. 13. 2(b), and select a critical point
(&,*, n”") on the boundary segment having positive coordinates. Hence
there is a minimal cut Cl = (Xl, i-l) containing Ai and a minimal cut

62 = (XZ’ fz) not containing A.. It follows that the minimal cut

i
C = (X1 n X2, -}Zl U iz) contains Ai but not Aj. The capacity of C
corresponding to (¢, %) is ;ij(g*, n¥), and hence the capacity of C

corresponding to the variable point (¢, n) is ;ij(g*’ n") + £ — ¢ Thus
- - *  » *
ViJ(g, ﬂ) S viJ(g » N ) + g - g ’

and in particular

— —-— * * *
vij(O, ©) < vij(g ,n)—¢".

Again equality must hold here, and so (£ * n*) is on the boundary of R 10°

Hence qij Z 0.



Corollary 13.4. I Ai and Aj have the same terminal node, then

qij < 0. If the initial nodes of Ai and Aj are both sources, then q*.'i < 0

If the terminal nodes of A1 and A 3 are both sinks, then q j < 0.

Proof. The first statement follows from the theorem by reversing
all arc orientations and interchanging the roles of sources and sinks. The
second statement can be proved in a way exactly analogous to the proof
of part (ii) of the theorem. The third statement follows from the second

by reversing the network.
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Chapter II

FEASIBILITY THEOREMS AND COMBINATORIAL APPLICATIONS

Introduction. The first part of this chapter develops several
theorems that give necessary and sufficient conditions for the existence
of network flows that satisfy additional linear inequalities of various
kinds. Adopting the linear programming terminology introduced in the
first chapter, we call these feasibility theorems. Typical of such are
a supply—demand theorem (section 1) due to Gale | ], that states
conditions for the existence of a flow satisfying ''demands'' at certain
nodes from ''supplies' at others, and a circulation theorem (section 3)
due to Hoffman | ] that gives conditions for the existence of a
circulatory flow in a network in which arc flows are subject to both
lower and upper bounds. In addition to these and variants of them, one
other useful feasibility theorem is presented in section 2 | ].

Proofs of each of these theorems can be made to rely on the max
flow min cut theorem. (It is true, conversely, that each implies the
max flow min cut theorem.) As a consequence, it will follow from the
integrity theorem that if the additional constraints are integral, e.g. if
the supply and demand functions in the supply—demand theorem are integral
valued, or if the lower and upper bound functions for the circulation
theorem are integral valued, then integral feasible flows exist provided

there are any feasible flows. Using this fact, various combinatorial



problems that have received attention in the mathematical literature
can be posed and solved in terms of network flow. The remainder of the

chapter illustrates this method of attack on a number of such problems.

1. A supply—demand theorem. Let [N; 4] be an arbitrary

network with capacity function ¢, and suppose that N is partitioned into
sources S, intermediate nodes R, and sinks T (as in 1.7). Associate
with each x ¢ S a nonnegative number a(x), to be thought of as the supply
of some commodity at x, and with each s ¢ T a nonnegative number b(x),
the demand for the commodity at x. The question we are interested

in is: under what conditions can the demands at the sinks be fulfilled

from the supplies at the sources, that is, when are the constraints

f(x, N) — f(N, x) < a(x), xe S,
f(x, N) — f(N, x) = 0, x ¢ R,
f(N, x) — f(x, N) > b(x), xe T,
0 < f(x, y) < clx, y), (x, y)e &,

feasible ?

For example, consider the undirected network of Fig. 1.1
having arc capacities as indicated, and suppose a(1) = 7, a(2) = 2,
b(7) = 1, b(8) = 8. (Formally, we take & to consist of ordered pairs,
so that the undirected arc (x, y) is replaced by the pair of directed arcs

(x, y) and (y, x), each having the given capacity.)



Fig I.1

A flow that almost succeeds in meeting the demands from the
supplies is shown in Fig. 1.2, in which the second numbers on arcs

represent the amounts of flow and arrows denote flow directions.




Is there a feasible flow for this problem, or does Fig. 1.2
represent the best one can do? To answer this question, look at the
subset of nodes X = {2, 8)}. If the problem is feasible, it must be
possible to send into X a total amount that is at least equal to the excess
of demand over supply for i, here b(8) — a(2) = 6. But the arcs leading
into X have capacity sum 5. Thus it is not possible to fulfill the demand
at node 8, and the problem is infeasible.

The following theorem, due to Gale [ ], glves necessary

and sufficient conditions for the supply—demand constraints to be feasible.

Theorem 1.1. The constraints

(1. 1) f(x, N) — f(N, x) < a(x), xeS,
(1. 2) f(x, N) — f(N, x) = 0, x ¢ R,
(1.3) f(N, x) — f(x, N) > b(x), xe T,

(1. 4) 0 < f(x, y) < clx, y), (x, y)e &,

where a(x) > 0, b(x) > 0, are feasible if and only if
(1.5) BT N X) - a(s NX) < cX, X)

holds for every subset X C N.

Interpreting a supply as a negative demand, condition (1.5)

is the statement that the net demand over any subset X of N cannot exceed



the capacity of the arcs leading into X. The main content of the theorem
is the assertion that if this condition is satisfied for all subsets of N, then

the problem is feasible.

Proof. If there is an f satisfying (1. 1) — (1. 3), it follows

immediately by summing these equations and inequalities over x ¢ X that
B(T N X) — a(s N X) < (N, X) - £(X, N).

Writing N = X U X gives .
BTN X) —als N X) < £(X, X) - (X, X).

If f satisfies (1.4), this last inequality implies
B(T N X) ~a(s NX) < X, X).

To prove the sufficiency of (1.5), extend the network [N; 4] to a
new network [N*; @] by adjoining a fictitious source s, sink t, and the

arce (s, S), (T, t). The capacity function on Q" is defined by

c*(s, x) = a(x), xeS,
c*(x, t) = b(x), xe T,

c*(x, y) = clx, y), (x, y)e Q4.

The assumption (1.5) for all X € N is tantamount to the statement

that the cut (T, t) separating s and t is minimal in [N*; a"]. To see this,

\»r



let (X’, X*) be any cut separating s and t. Defining X = X" - s,

X = x* - t, we have

c*(X*, X*) — ¢M(T, t) = c*(X, ) + c™s, X) + "X, X) = cN(T, 1)
= b(T N X) + a(s N X) + c(X, X) = b(T)

= —b(T N X) +als NX) + clX, X).

Thus c*(X*, ;(_;) > ¢*(T, t) for all cuts x*, X*) separating s and t if
and only if (1.5) holds for all X € N.

It follows from the max flow min cut theorem that (1.5) implies
the existence of a flow £ from s to t in [N*; "] that saturates all arcs
of (T, t). The restriction f of t* to A clearly satisfies (1.2) and (1. 4);

f also satisfies (1. 1) and (1. 3), since

a(x) > f*(s, x) = £*(x, N) — f*(N, x) = f(x, N) — f(N, x),

blx) = £*(x, t) = £*(N, x) — £"(x, N) = {(N, x) ~ f(x, N),

for x in S and T, respectively.

This completes the proof of Theorem 1. 1.

Going back to the example of Fig. 1.1, we see from the labeling
process that a minimal cut in the enlarged network consists of the arcs
(s, 2), (1, 2), (4, 2), (6, 8), (1, 8), (7, t) having capacity sum 8, which
is less than the total demand 9. Hence the problem is infeasible and

a partition (X, X) of N has been found for which (1. 5) fails, namely



X = {2, 8}, as was noted earlier. In general, if one is interested in
checking the feasibility of a given supply—demand network, the most
efficient method is to use the labeling process to solve the equivalent
maximal flow problem in the enlarged network, rather than to check the
conditions (1. 5) for all subsets of N. If the problem is infeasible, a
violation of (1. 5) will be located at the conclusion of the computation by
taking X and X to be the labeled and unlabeled nodes of N, respectively.

The principal tool used in the proof of Theorem 1. 1 was the max
flow min cut theorem. It can be seen, on the other hand, that Theorem
1.1 implies the max flow min cut theorem: one places a demand at the
sink t equal to the minimal cut capacity, an infinite supply at the source
8, and lets the other nodes be members of R.

There is another formulation of Theorem 1.1 that is useful.

This version of the supply—demand theorem is also due to Gale [ 1.

Corollary 1. 2. The constraints (1. 1) — (1. 4) are feasible if

and only if, for every set T'c T, there is a flow f,, satisfying (1.1),

(1.2), (1.4), and
(1.6) fr (N, T') = £ (T', N) > b(T').
Proof. The necessity is obvious. Sufficiency asserts that if,

corresponding to every subset of sinks, there is a flow that satisfies the

aggregate demand of the subset without exceeding the supply limitations



at each source, then there is a flow that meets all the individual demands.

To prove sufficiency, let X, X be any partition of N and define

sets

Since fT' satisfies (1.1), (1.2), and (1.6), it follows that

-a(s") < f(N, §) - fT.(s', N),
! 1
0 = fT'(N’ R)—th(R, N),

b(T') < £ (N, T) -fT.(T', N).
Hence adding and using (1. 4),

B(T') — a(s") < £.M,X) = L&, N) = 100K, X) = 10X, X) < elX, X).

Thus condition (1. 5) is fulfilled for all X € N, and the constraints
are feasible by Theorem 1. 1.

A similar proof shows that the supply—demand constraints are
feasible if and only if, for every subset S' of sources, there is a flow

fS' satisfying (1. 2), (1.3), (1.4) and

£ (S, N) — £1 (N, s') < a(s).
In other words, if corresponding to each subset of sources, there is a

flow that satisfies all individual demands without exceeding the aggregate

supply of the subset (the supply at sources outside the subset being



infinite), then there is a feasible flow.

The proof of Theorem 1.1 and the integrity theorem establish the
following fact. If the functions a, b, and c are integral valued, and if
there is a feasible flow, then there is an integral feasible flow. Similar
integrity statements will hold for the other feasibility theorems proved
in the next two sections.

Beginning with section 4, the remainder of this chapter will
require the use of such integrity statements in setting up a number of
combinatorial problems as flow problems. We illustrate this approach
here with the following example, suggested by Gale. Consider a round.
robin tournament between n teams, with each team playing every other
team ¢ times. (For instance, in major league baseball, n = 8 and ¢ = 22. )
Let a, (i =1, 2, ..., n)be the number of wins for the i—th team at the
conclusion of the tournament. What are necessary and sufficient condi—
tions on a given set of nonnegative integers @y gy roy @y in order that
they represent a possible win record? Obvious necessary conditions are
that ;1 o = cn(n — 1)/2, the total number of games played, and that

i= i
a < c(n — 1), the total number of games played by the i~th team. These
conditions are of course not sufficient, since, for exampie, we might
take @, = o, = c(n — 1) and satisfy these conditions, yet teams 1 and 2

1 2
play each other.



To find necessary and sufficient conditions, one can proceed as

follows. Select the notation so that «a >«

1 Z...>an?_0,and

2
define a directed network [N; 2] by N = {1, 2, ..., n}, @ = {i, i < j}.

Now, thinking of (i, j) as representing the number of wins for team i over

team j, one has

T £, )+ = [c-1(G, )] =a,
Pi <1 '

or
(1.7) £, N) = £(N, i) = a, — cli ~ 1).

Conversely, any integer valued function f defined on the arcs of the

network that satisfies (1.7) and
(1.8) 0 < f(i, j) < e

represents a tournament in which team i wins a games. Defining

Sc€ Nand T =S by
(1.9) s ={ilg,—cti ~1 > 0},
and corresponding supply and demand functions by

(1. 10) a(i) = a —cli - 1), ies,

(1.11) bli) = —a +cl - 1), ieT,

(0



it follows, using the integrity theorem, that the a; represent a possible

win record if and only if the constraints

(1.12) £(i, N) — £(N, 1) = a(), ies,

(1.13) f(N, i) — f(i, N) = b(i), ieT,

(1. 14) 0 <14, j) <c
n

are feasible. In view of the condition = e, = cn(n — 1)/2, which
i=1

says that a(S) = b(T), we can, if we like, replace (1. 12) and (1. 13) by
inequalities (resp. < and > ) in order to obtain the supply—demand
constraints appearing in Theorem 1. 1. Applying Theorem 1.1, it

follows that the a, represent a possible win record if, and only if, for

i
every X C N,
(1. 15) ¢ L (-1- L e <clx Xl
ieX ieX
(Here | | denotes cardinality. Note that for X .= N, equality actually

n
holds in (1. 15) by virtue of = @
i=1

i - cn(n — 1)/2.)

The 2" inequalities (1. 15) can be simplified greatly. They are,
in fact, equivalent to only n inequalities. To see this, first rewrite

(1. 15) as



(1. 16) —clXl +c|z_1-1x Xl =_ e,
ieX ieX

and consider those inequalities of (1. 16) for all subsets X of fixed

cardinality p. The left side of (1. 16) is constant for all such X, being

equal to c(n — p)(n — p — 1)/2, while the right side is minimized by

taking X = {1, 2, ..., p}. Thus the inequalities (1. 16) are equivalent to
n

(1.17) cla—-pln—-p-1/2< T a

i =01 ..., n—1)
isp+l

n
or, adding ¥ a, = cn(n — 1)/2 to both sides, to

i
1
p
(1. 18) z e < cp(2n — p = 1)/2, =12 ..., n)
i=1
To sum up, the necessary and sufficient conditions that
a, > a, > ... 2 a > 0 represent a win record for a round robin

tournament in which each team plays ¢ games with every other team is

that the inequalities (1. 18) hold, the last with equality.

2. A symmetric supply—demand theorem. Suppose that, instead

of requiring the net flow out of each source to be bounded above, and the
net flow into each sink to be bounded below, we extend the problem by

imposing both lower and upper bounds on the net flow leaving each source

/>~



and entering each sink. What are feasibility conditions for the resulting
set of inequalities? One version of the theorem that will be established
for this situation may be described verbally as follows: (a) if there isa
flow that satisfies the lower bound requirements at the sources and the
upper bound requirements at the sinks, and (b) if there is a flow that
satisfies the upper bound requirements at the sources and the lower bound
requirements at the sinks, then there is a flow that meets all the require—
ments simultaneously.

For example, consider the network of Fig. 2.1 with all arc
capacities unity, the sources being the nodes on the left, the sinks on
the right, with lower and upper bounds as indicated. For lower bounds
at sources and upper bounds at sinks, a feasible flow is shown by the
heavy arcs of Fig. 2.2, while for the reverse situation, upper bounds

at sources and lower bounds at sinks, a feasible flow is shown in Fig. 2.3.




Notice that the flow of Fig. 2.2 violates the constraints of Fig. 2. 3, and
the flow of Fig. 2.3 violates the constraints of Fig. 2.2. According to
the theorem, there is a flow meeting all constraints. One such is shown

in Fig. 2.4.

A proof of this theorem can be given along lines similar to the
proof of Theorem 1. 1 by transforming the given feasibility problem into
an equivalent maximal flow problem in an enlarged network (using a device
that will appear again in the next section). The max flow min cut theorem
can then be applied to derive a pair of feasibility conditions, one of which
is equivalent to (a) above, the other to (b).

We first describe the device to be used in transforming the
feasibility problem into a maximal flow problem. Basically, what will
be needed is a way of changing arbjtrary lower bounds on arc flows to
lower bounds that are uniformly zero. Thus suppose, for example, that

in a network [N; @] with source s and sink t, the problem is to ascertain

whether there is a flow from s to t satisfying 0 < f(x, y) < f(x, y) < c(x, y)

1¥



for some arc (x, y). Assuming that all source arcs are directed from

8 and all sink arcs into t, the problem may be pictured schematically

as in Fig. 2.5. (The possibility 8 = x or y = t is not excluded. ) Enlarge
the network as suggested in Fig. 2.6 by adding two nodes u, w, the arcs
(u, y), (x, w), each having capacity £(x, y), the arc (t, s) having infinite
capacity, and let (x, y) have the new capacity c(x, y) — £(x, y). Then

a feasible flow f from s to t of value v in the original network generates

a flow £* from u to w of value 2 (x, y) by defining

f*(t, B) = v,
', y) = £*(x, w) = £(x, y),
f'x, y) = f(x, y) — 2(x, ¥),

f* =f, otherwise,

and conversely. Thus a feasible flow exists if and only if the value of a

maximal flow in the new network is £(x, y).

/A
R
\

Fig. 2.5
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first extend the network by adjoining new nodes s, t and the arcs (s, S),
(T, t), where (s, x), x ¢ S, has lower and upper bounds a(x), a'(x), and
(x, t), x ¢ T, has lower and upper bounds b(x), b'(x). A further extension
can then be made using the devi‘ce discussed above for getting rid of non—
zero lower bounds on arc flows. The result, pictured schematically in

Fig. 2.7, is a network [N*; a”], where N consists of N plus four new

nodes s, t, u, w and a” consists of Q and the additional arcs

(s, S), (u, S), (T, t), (T, w), (u, t), (5, W), (t, B).

——
—
O P
S
SIS
-
Fig. 2.7

The capacity function ¢ defined on 2 is extended to a* vy



Fig. 2.6

Another way to interpret this device is to think of a supply

2(x, y) at y and a demand £(x, y) at x, thereby eliminating the nodes u,

w and their arcs.

Returning now to the original problem of finding feasibility

conditions in [N; 2] for the constraints

a(x) < f(x, N) — f(N, x) < a'(x),
f(x, N) — f(N, x) = 0,
b(x) < f(N, x) - f(x, N) < b'(x),

0 < f(x, y) < clx, y),

where a, a', b, b' are given functions satisfying

0

IA

a(x) < a'(x), xeS,

0 < bi{x) < b'(x),

xe T,

xe S,
x ¢ R,
xe T,

(x, y)e a,

t 7



c(s,
c(u,
c(x,
c(x,
c(u,
c(s,

c(t,

x) = a'(x) — a(x), x¢ S,
x) = a(x), xe S,
t) = b'(x) — b(x), xe T,
w) = b(x), xeT,
t) = b(T),

w) = a(S),

5) = @,

We assert that a feasible flow exists in [N; 4] if and only if the

value of a maximal

flow from u to w in [N*; %] is a(S) + b(T). Suppose

first that f is feasible in [N; @] . Extend f to ¥, defined on 4%, as

follows:
£*(s,
f *(u,
f *(x,
£*(x,
£¥(u,
£*(s,
£*@,

£*(x,

x) = f(x, N) — £f(N, x) — a(x), xeS,
x) = a(x), xeS,

t) = f(N, x) — f(x, N) — b(x), xe T,

w) =b(x), xe T,

t) = b(T),

w) = a(S),

8) = £(S, N) — (N, S),

y) = f(x, y),° (x,y)e A.

It is a routine matter to check that f* is a flow from u to w in [N*; A*].

Clearly, f* has value a(S) + b(T).

/€
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Conversely, let f* be a flow from u to w in [N*; (Z*] of value

a(S) + b(T). Then

f*(u, x) = a(x), XxeS,

£*(x, w) = b(x), xe T.

Let f be f* restricted to @. Then f is a flow from S to T in [N; 2], and

it remains only to show that f is feasible. Suppose x ¢ S. Then
f*u, x) + £%(s, x) = f(x, N) — f(N, x),

or

a(x) + f*(s, x) = f(x, N) — f(N, x);
and, since 0 < f*(s, x) < a'(x) — a(x), we get
a(x} < f(x, N) — f(N, x) < a'(x).
The inequalities
b(x) < (N, x) — f(x, N) < b'(x), xe T,

are similarly proved. This completes the proof of the assertion.

We may, therefore, in searching for feasibility criteria, rephrase
the question as follows. Under what conditions does there exist a flow
¥ from u to w in [N*; Q"] having value a(S) + b(T), i.e. saturating

all source and sink arcs?



The max flow min cut theorem can now be used to provide an
answer to this question by insisting that the capacities of all cuts separat—
ing u and w be at least a(S) + b(T). Thus, let (X*, X*)be a cut in [N*; @%]

and consider cases.

Case 1. se¢ X¥, te x* Partition X, X*as follows:

*

X" =uUsU X, X"=wuU t U X, sothat X is the complement of X in
1 1

N. Then

c(X*, X% = cly, t) +cly, X)+cls, w) +c(S, X) +c(X, w) +c(X, t) +c(X, X)
eb(T) +a(SN X) +a(S) +a'(SN X)—a(SN X) +b(T N X)

+b'(T N X) =b(T N X) + (X, X).

Hence in this case, we always have c(X*, X" > a(S) + b(T).

*

Case 2. s ¢ X*, te X'. Then c(X*, X*) is infinite, and again no

condition is obtained.

Case 3. s¢ X*, te X*. LettingX* =sU tVuUX,Xx"=w UX,

we have

c(x*, X% = cls, w) +cls, X) +clu, X) +c(X, w) +c(X, X)

=a(s)+a'(s N X)-a(s N X) +a(S N X) +b(T N X) + c(X, X).

Thus c(X”, X*) > a(S) + b(T) if and only if



¢(X, X) > b(T N X) —a'(s N X).

Case 4. ¢ X* teX". LetX* =uuX, X*=s8UtuwUX

Then

e(x¥, ;i-“) = clu, t) + cly, X)+e(X, t) +c(X, w)+c(X, X)

= b(T) +a(S N X) +b"(T 1 X) —b(T O X) + b(T N X) +c(X, X),
and we obtain the condition
e(X, X) > alS N X) —bT N X).
We may therefore state the following result [ ].

Theorem 2.1. The constraints

(2.1)  a(x) < f(x, N) — (N, x) < a'(x), x ¢ S,

(2.2) f(x, N) — f(N, x) = 0, X ¢ R,
“{2.3)  bx) < (N, x) — f(x, N) < b'(x), xe T,

(2.4) 0 < f(x, y) < elx, y), , (x,y)e 4,

(where 0 < a(x) < a'(x) for xe Sand 0 < b(x) < b'(x) for xe T)

are feasible if and only if

(2.5) ¢(X, X) > b(T N X) —a'(s N X),

(2. 6) c(X, X) > a(s N X) = b(T N X)



Notice that (2.5) is precisely condition (1.5) for the supply—demand
case (Theorem 1. 1); that is, if a(x) = 0 for x ¢ Sand b'(x) = for x ¢ T,
then Theorem 2. 1 reduces to Theorem 1.1. Condition (2. 6) may be
interpreted as follows. If we interchange sources and sinks in [N; 4],
reverse all arc orientations, and think of a as the demand function at the
set S of sinks, b' as the supply function at the set T of sources, then
(2. 6) is a necessary and sufficient condition for feasibility of the supplies
and demands in the reversed network. Thus Theorem 2. 1 may be restated

as follows.

Corollary 2.2. The constraints (2. 1) — (2. 4) are feasible if and

only if each of the constraint sets

a(x) < f(x, N) — f(N, x), xeS,

f(x, N) — f(N, x) = 0, | xe R,
(2.7)

f(N, x) — f(x, N) < b'(x), xe T,

0 < f(x,y) < clx, y), x,y)e Q,

f(x, N) — f(N, x) < a'(x), xe¢ S,

f(x, N) — f(N, x) = 0, xe R,
(2.8)

b(x) < f(N, x) — f(x, N), x¢ T,

0 < flx,y) < clx, y), x,y)e 4,

is feasible.

2



Corollary 2. 2 is the formulation described verbally at the beginning
of this section.

When the network is suitably specialized, Theorem 2.1 (or its
corollary) provides criteria for the existence of a nonnegative matrix
whose row and column sums lie between designated limits, or, more
generally, for the existence of a matrix with these properties and the
further property that the elements of the matrix are bounded above by specified

numbers. We state the criteria provided by Corollary 2. 2 explicitly.

Corollary 2.3. Let0 < a, < a,,i=1 ..., m 0<b < be,

i

J=1,...,n andc. > 0be given constants. If there are matrices

1

1 2 ,
(f i ), (fij) satisfying

. < c
(2.9) ai < ? fij’ }1: fij < bj’ 0 < fij < Sy
2 1 2 2
. s b, < ZT I, 0< I < c,
(2. 10) 2; fij < 8 - i ij - "ij = 7ij’
then there is a matrix (fij) satisfying
. L 1
(2.11) a, < f fij < a3, bj < f fij < bj’ 0 < fij < cij'

To prove Corollary 2. 3, take [N; (L] to be the network consisting

of nodes xi(i =1, ..., m), yj (G =1, ..., n), and arcs (x ) of

i’ yj
capacity ¢ LetS = {xl, ceey xm), T = {yl’ ceny yn}, so that R is

iy

23
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vacuous. Associate with each source X, the bounds a, ai' and with each
sink Yy the bounds bj’ b;;. Then a flow from S to T is a matrix (fij)
satisfying 0 < fi.i < c, J

two inequalities of (2. 11). Thus Corollary 2.3 is an immediate consequence

; a feasible flow satisfies, in addition, the first

of Corollary 2. 2.

The particular kind of network involved in the proof of Corollary
2. 3, namely one in which the nodes N are divided into two subsets with
all arcs of @ leading from nodes of one subset to those of the other (we
do not, however, insist that all such arce be present in @), will crop up
frequently enough to justify a special name. One name that has been used
by writers in graph theory is "bipartite'’; henceforth we shall use this

terminology also.

3. Circulation Theorem. The final feasibility theorem that we

shall discuss before proceeding to combinatorial applications is due to
Hoffman | ], whose original proof was made to rely on the separation
theorem for convex sets. This feasibility theoregm is concerned with the
existence of circulations, i.e. flows that are source and sink free, that
satisfy prescribed lower and upper bounds on arcs.

The method used in the last section can be applied to this problem
as well.

Let the given network be [N; d] and suppose that £ and c are the

lower and upper bound functions defined on (2, where 0 < t < c. A



feasible circulation in [N; @] is a function f on ( satisfying

f(x, N) - f(N, x) = 0, xe N,

I(X) Y) S f(x, y) 5 c(x, y), (x, y) e a.

Extend [N; Q] to [N%; a*]' by the adjunction of two nodes s, t
and the sets of arcs (s, N) and (N, t). The capacity function defined on

a* is

c*(x, y) = clx, y) — 2(x, y), (x, y)e Q,
c*(s, x) = &N, x), xe N,
c*(x, t) = #(x, N), x ¢ N.

It is easy to verify that a feasible circulation f in [N; 4] generates a

flow £* from s to t in [N*; Q%] via the rule:

f’(x; y) = ix, y) = #x, y), (x, y)e &,
£*(s, x) = &N, x), x ¢ N,
£*(x, t) = 2(x, N), x ¢ N.

Thus the question becomes: when is there a flow from 8 to t in [N*; a*]
that has value (N, N)?

Our procedure is now familiar. The necessary and sufficient
condition for the existence of a flow from s to t of value (N, N) is that

all cut capacities exceed £(N, N). Let (X*, X*) be a cut separating s

and t in [N*; Q%)], and define X C N together with its complement X in N by



Then

c*(X*, X*) =c*X U s XU t)

c*(X, X) + c*(s, X) + c*(X, t)

e(X, X) - (X, X) + 1N, X) + (X, N)

e(X, X) + 41X, X) + 1(X, N),
and consequently c*(X*, X*) > (N, N) if and only if
cx, X) > 1(X, X).
Thus we have established [ ]

Theorem 3. 1. A necessary and sufficient condition for the

constraints
(3.1) f(x, N) — f(N, x) = 0, xe N,
(3.2) «(x, y) < f(x, y) < clx, y), x, y)e Q,

to be feasible, where 0 < £(x, y) < c(x, y), is that

(3. 3) c(X, X) > X, X)

hold for all X C N.



As in the other feasibility theorems, the necessity of the condition
is intuitively clear (and easily proved directly), since (3. 3) simply asserts
that there must be sufficient escape capacity from the set X to take care
of the flow forced into X by the function £. If the condition is satisfied
vfor all subsets of nodes, the existence of a feasible circulation is assured.

The reason why the necessity of such feasibility conditions is
always the easier half of the theorem is that necessity corresponds to the
weak half of the max flow min cut theorem, that is, flow values are bounded
above by cut capacities.

There is one fundamental difference between the supply—demand
theorems and the circulation theorem, however, that lies in the distinction
between flows in undirected or mixed networks and flows in directed net—
works. If we interpret flows in undirected or mixed networks to mean
that flow in an arc is unidirectional but no direction may be specified
(as in I. 10), then Theorems 1.1 and 2. 1 remain valid. But Theorem 3.1
gives no information about the problem of determining conditions under
which a feasible circulation exists in an undirectéd network subject to
lower and upper bounds on arc flows. (This problem is, so far as we
know, unsolved.) Generally speaking, if nonzero lower bounds are imposed
on undirected arc flows, then replacing an undirected arc by a pair of
oppositely directed arcs and cancelling flows in opposite directions is not

a valid operation, and so there is a real distinction between directed and
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undirected problems in this case.

The circulation theorem can be used to answer the question raised
in I. 8 concerning the existence of flows from s to t in a directed network
subject to lower and upper bounds on arc flows. By adding the arcs
(s, t) and (t, 8) to the network with infinite capacity (allowing multiple
arcs if necessary), the relevant condition becomes (3. 3) for all X € N
such that either both s and t belong to X or neither does. To construct
such flows, one can of course solve the equivalent maximal flow problem
used in deriving the existence conditions.

Hoffman has also stated an extension of the circulation theorem
covering the situation in which the net flow into node x lies between
stipulated bounds [ ]. The result here, which may be proved either

from the circulation theorem or its variant described above, is:

Ll

Theorem 3.2. The constraints

(3.4) a(x) < (N, x) — f(x, N) < a'(x),
(3.5) ilx, y) < fx, y) < clx, y),

(where a(x) < a'(x), 0 < Ax, y) < elx, y)) are feasible if and only if

(3.86) c(X, X) > 1(-}?, X) + max [a(X), — a'(X)]

holds for all X € N.
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A proof of Theorem 3. 2 can be given by adjoining a source s and
sink t to N, the sets of arcs (s, N) and (N, t) to Q. , and extending the

functions £ and c to arcs of the new network by defining

(s, x) = max (0, —a'(x)),
2(x, t) = max (0, a(x)),
c(s, x) = max (0, —a(x)),

c(x, t) = max (0, a'(x)).

Applying the feasibility conditions stated in the preceding paragraph
to the new network yields the pair of conditions embodied in 3. 6).

In case a(x) = a'(x) = 0, or indeed, if a(x) = 0, then (3.6)
reduces to (3. 3).

Although the proof of Theorem 3.1 that has been presented in this
section used the max flow min cut theorem, an alternate, direct proof can
be given along lines similar to the proof of the latter. The direct con—
struction for a feasible circulation described below provides such a proof
in case the lower bound function £ and capacity function c are rational
valued. The basic routine in this construction is again a labeling process.

We assume for the construction that £ and c are integral valued.

Construction of a feasible circulation. Start with any integral

valued f that satisfies the conservation equations at all nodes. For

example, f = 0 will do. Next locate an arc (s, t) for which one of the
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bound conditions (3. 2) is violated, and go on to the appropriate case
below.

Case 1. f(s, t) > c(s, t). Starta labeling process at node s,
trying to reach node t, assigning labels to nodes as follows. First label
8 with [t , «(s8) = f(s, t) — c(s, t)] . In general, select any labeled,
unscanned node x, and assign further labels to (unlabeled) nodes y using
the rules: (a) if (x, y) is an arc with f(x, y) < c(x, y), assign y the
label [x+, e(y) = min (e(x), c(x, y)—f(x, yD]; ) if (y, x) is an arc with
fly, x) > t(y, x), assigny the label [x , e(y) = min (e(x), f(y, x)—1(y, x))] .
Continue labeling until either node t is labeled (breakthrough), or until no
more labels can be assigned and node t is unlabeled (nonbreakthrough). In the
former case, change the flow by adding and subtracting ¢ (t) while back—
tracking from t to s according to first members of the labels; having reached
s, also subtract ¢(t) from f(s, t). If nonbreakthrough occurs, terminate.
(There is no feasible circulation. )

Case 2.' f(s, t) < (s, t). étart labeling at t, trying to reach s,
first assigning t the label [s+, et) = 1(s, t) — f(s, t)] . The labeling
rules are the same as Case 1. If breakthrough occurs, so that a path
from t to s has been found, change the flow by adding ¢(s) to the flow in
forward arcs of this path, subtracting ¢(s) from the flow in reverse arcs,
and adding ¢(s) to f(s, t). If nonbreakthrough, terminate. (There is
no feasible circulation.)

Following a flow change in either case, locate another arc flow



that violates its bounds, and re—label.

This algorithm either constructs a feasible circulation in finitely
many steps, or proves there is no feasible circulation. First of all, note
that if breakthrough occurs in either case, a cycle has been found that
includes the arc (s, t). (For in Case 1, t cannot be labeled from s via
the arc (s, t), and similarly in Case 2.) Then the flow change made on
arcs of this cycle again yields an f ' satisfying the conservation equations.
Moreover, the new arc flow { '(8, t) comes at least one unit closer to
feasibility, and if &(x, y) < f(x, y) < c(x, y) for any other (x, y), then
also £(x, y) < f'(x, y) < clx, y). It follows that, after finitely many
steps, either a feasible circulation is constructed, or nonbreakthrough
occurs.

Suppose that nonbreakthrough occurs, say in Case 1, and let X
and X be the labeled and unlabeled sets of nodes. Thense¢ X, te X. It

follows from the labeling rules that f(x, x) > c(x, x) for all arcs in (X, X),

and f(x, x) < £(x, x) for all arcs of (X, X). Also, for at least one arc of
(X, 'f), namely (s, t), we have strict inequality f(s, t) > ¢(s, t). Thus,

since f satisfies the conservation equations at all nodes,
0 = (X, X) - (X, X) > c(X, X) — #(X, X),

violating condition (3. 3). Hence there is no feasible circulation.

An exactly similar proof holds for Case 2.

3
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A variant of this construction for a feasible circulation will play a

role in one of the algorithms of Chapter III.

4. The Kénig-Egervary and Menger graph theorems. We shall

customarily use the word "graph' or "linear graph" when our intent is to
focus attention on purely combinatorial results, and use "network'' when the
primary concern is with flows.

There are two well-known theorems in linear graph theory that are
intimately related to the max flow min cut theorem for network flows. They
may, in fact, be regarded as combinatorial prototypes of the latter. The
first of these theorems (Theorem 4. 1), due to Konig and Egervéary, appears
as a lemma in the proof of Menger's theorem given in [ ] ; it deals
with bipartite graphs. Menger's theorem (Theorem 4. 2) is the generali—
zation that results for arbitrary graphs.

We use the notation [N; @] =[S, T; @] for bipartite graphs in

which arcs lead from Sto T.

Theorem 4.1. Let G =[S, T; @] be a bipartite graph. The

maximal number of arcs of G that are pairwise node disjoint is equal to the

minimal number of nodes in an S, T disconnecting set of nodes. ¥

*Many combinatorial proofs of this theorem are known. Of these,
perhaps the one closest in spirit to the use of flows is that of [ ], in which
the notion of an alternating path substitutes for that of a flow augmenting path.
One other proof we wish to call the reader's attention to is given in [ .
This proof, and the use of it made by Kuhn | ] in devising an algorithm
for the optimal assignment problem, played an important role in the develop—
ment of the algorithms to be presented later for minimal cost transportation

problems.



Here an S, T disconnecting set of nodes is a set of nodes that
blocks all chains from S to T.

To prove this theorem from flow theory, one can proceed as
follows. Adjoin nodes s, t and the sets of arcs (s, S), (T, t) to the net—

work. For the resulting network [N*; 2*] define a capacity function by

c(s, x) = 1, xe S,
clx, t) =1, xe T,
clx, y) = w, (x, y) « Q.

Let f be an integral maximal flow from s to t and let (X, X) be a minimal
cut separating s and t. (Note that (X, X) can contain no arcs of Q.) The
arcs of the set £ = {(x, y) ¢ | f(x, y) = 1} are pairwise node disjoint,
and the nodes of the S, T disconnecting set D = (S N X) U (T N X)are
in one—one correspondence with the arcs of the minimal cut (X, X) It
follows from the max flow min cut theorem that if f has value v, then
v is the number of elements in ¥ , and also in D. Hence, since the maximal
number of pairwise node disjoint arcs of G is cléhrly less than or equal to
the minimal number of nodes in an S, T disconnecting set of nodes, the
proof of Theorem 4.1 is complete.

Another statement of the Konig—Egervary theorem is sometimes
given in terms of m by n arrays that contain two kinds of cells, admissible

and inadmissible, say. Suppose we refer to the rows and columns of the



array by the common term ''lines'’. A set of lines covers the admissible
cells of the array if each admissible cell belongs to some line of the set.
A et of admissible cells is independent if no two cells of the set lie in
the same line. By constructing from the array the bipartite graph G

composed of nodes

S-{xl""!xm}y T'{ylt"’)yn}’

and arcs (xi, yj) corresponding to admissible cells, one sees that the
notion of "independent set of admissible cells' (respectively, '"covering
set of lines') corresponds to 'pairwise node disjoint arcs'' (respectively,
"S, T disconnecting set of nodes''), and hence Theorem 4. 1 becomes:
the maximal number of independent admissible cells is equal to the

minimal number of lines that cover all admissible cells.

Theorem 4. 2. Let S and T be two disjoint subsets of the nodes

of the graph G = [N; @] . The maximal number of pairwise node disjoint

chains from S to T is equal to the minimal number of nodes inan S, T

disconnectiﬂ set gf_ nodes.

Again this theorem follows from the max flow min cut theorem
and integrity theorem by adjoining a source s and sink t, together with

source arcs (s, S) and sink arcs (T, t), and imposing unit capacity on all

old nodes, infinite capacity on arcs. A chain decomposition of an integral

4



maximal flow from s to t provides a maximal set of pairwise node disjoint
chains.
The graph G in Theorem 4. 2 may be directed, undirected, or

mixed without affecting the theorem statement. It is also clear thata

similar theorem holds for chains from S to T that are pairwise arc dis—

joint and sets of arcs that block all chains from S to T, since we may place

unit capacity on arcs, infinite capacity on nodes.
The max flow min cut theorem is obviously a generalization of
Theorem 4. 2. On the other hand, a proof of the max flow min cut theorem

that uses Theorem 4.2 as the principal tool has been given by Robacker

[ ]-

5. Construction of a maximal independent set of admissible

cells. The labeling process for constructing maximal flows can of course

be used to produce a maximal independent set of admissible cells and a
minimal covering set of lines for the array interpretation of Theorem 4. 1.
It is worthwhile describing this computation in detail, since some simpli—
fication is possible because of the special nature.of the associated flow
problem. The algorithm that results is similar to the construction that
may be considered implicit in Konig's proof of Theorem 4.1, and also

in spirit, although not in detail, to Kuhn's method for solving this
problem [ ].

Leti = 1, ..., m index the rows of the array, j = 1, ..., nthe

25



In case (a) the total number of 1's in the array can be increased
(by one) as follows. In the column containing no 1 that has just been
labeled, place a 1 in the position designated by its label; then proceed,
in the row in which this 1 lies, to the position indicated by its label and
remove the 1 there; then go, in the column just reached, to the position
indicated by its label, and place a 1, and so on. Eventually one of the
initially labeled rows (those marked by dashes) will be reached, at which
point the replacement stops, and’the total number of 1's in the array has
been increased by one. The labeling process is then repeated with the
new placement of 1's.

In case (b), a minimal covering set of lines consists of the un—
labeled rows and labeled columns.

Example. In the array of Fig. 5.1, admissible cells are blank
and inadmissible cells are crossed out. The 1's shown constitute an
initial placement using the suggested starting procedure. Rows 8 and 8
have no 1's; we need to 'break through"‘ to either column 5
or 9 to get an improvement. Scanning row 8 labe_ls columns 2, 4,

6; row 9 produces the additional labels on columns 1, 8. From
column 1 we label row 2; from column 2, row 1; from column 4, row
3; from column 6, row 5; and from column 8, row 6. Switching back
to row scanning, we get only the additional label 2 on column 3. Then

row 4 receives the label 3, following which breakthrough into



columns. The maximal flow problem becomes that of placing as many
1's as possible in admissible cells, with the proviso that at most one 1 can
be placed in any line. Initiate the process with any feasible placement of
1's, e. g. scan the first row and place a 1 in the first admissible cell, then
delete the lines containing this 1 and repeat the procedure in the reduced
array.

After obtaining a feasible placement of 1's, begin by labeling (with
dashes, say) all rows that contain no 1's. Then select a labeled row,
say the i~th row, and scan it for admissible cells, labeling the (unlabeled)
columns corresponding to such cells by the number of the row being
scanned, here i. Repeat until all labeled rows have been scanned (never
labeling a column that has already received a label). Now select any
labeled column, say column j, and scan it for a 1; if such is found, label
the row in which the 1 lies with the number of the column being scanned,
here j. Again select an unscanned, labeled column and repeat the procedure.
After scanning all labeled columns, revert to row'sca.nnlng by select—
ing a labeled, unscanned row. The process continues in this fashion,
alternating between row and column scanning until either:

(a) a column is labeled that contains no 1, in which case an
improved placement of 1's can be found from the labels (breakthrough);

(b) no more labels are possible and breakthrough has not occurred,

in which case the present placement of 1's is maximal (nonbreakthrough).



v
S

1 2 3 4 5 6 17 8 9
1 X1 x] x| X X X| 2
2 |1 Xt+— XX x| x}Xx]|1
3 |X x|1|x|x|x X| 4
s |x 1<—+ X 3
5 X X| X X1} x X| 6
6 [X X| x| X x| 1] x| 8
7 X X 1] x
8 |Xx X X X | x| x| -
o ('] x]|x X | x| X x| -
9 8 2 & 4 8 9 .J Labels
Fig. 5.1

either column 5 or 8 occurs; here we have labeled column 5. The
arrows in Fig. 5.1 indicate the resulting sequence of changes in the
placement of 1's.

After making the indicated changes and relabeling, case (b) occurs
and a minimal cover is found to consist of rows 2, 4, 7, 9 and columns
2, 4, 6, 8.

A practical instance of this kind of problem might occur, for
example, in attempting to fill jobs with qualified personnel. Thus if man
i is qualified for job j, cell ij is classified "'admissible', otherwise
"inadmissible''. An assignment of men to jobs that maximizes the

number of men assigned to jobs they are qualified for can then be found



by the procedure we have outlined. As we shall see later, this problem

is a special case of the optimal assignment problem ( ), a

solution to the latter can, however, be obtained by solving a sequence of

such special assignment problems.

6. A bottleneck assignment problem. The computation of the

preceding section can also be applied repeatedly to solve the following
bottleneck problem. Suppose there are n men and n jobs, that mani in
job j has an "efficiency" aij’ and that it is desired to find an assignment
i —> P(i) of men to jobs that magimizes the least ai, P()’ i.e. we want

to construct a permutation P* that achieves max min a For

P

example, the jobs might be those on an assembly line, and aij might

i, PU)

represent the number of units per hour that man i can process if assigned
to job j. Then for a given assignment P, the rate of the assembly line
is measured by the bottleneck miin ai’ P and thus we wish to maximize
this over all permutations P[ ].

Gross has pointed out a simple procedure for solving this
problem [ ]. Briefly, it is this. Begin by selecting an arbitrary
permutation P. Then, in the array (aij)’ call a cell admissible or

inadmissible according as a,. > min a, a,. < min a

1] i, Pl) OF &4j 0L, PAY
(Clearly P can be improved if and only if n independent admissible cells
can now be found in the array.) Apply the algorithm of Section 5 to construct

a maximal set of k admissible cells. Ifk < n, P is optimal; ifk = n,



repeat the procedure with the new permutation thus defined.

Example. Suppose the array (aij) is that of Fig. 6. 1 and we
initiate the computation with the permutation indicated by the checks (V).
The resulting admissible cells are indicated by circles in Fig. 6.2. We
may then start with the partial assignment obtained by retaining as many
checks in admissible cells as possible (here five) and apply the labeling
procedure to construct the assignment indicated by 1's in Fig. 6. 2. In
the new array of admissible cells thus defined (Fig. 6.3), there are at
most five independent admissible cells, and hence the assignment of

Fig. 6.2 is optimal.

113720601 ~»@J- | @1
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3|5|4|8 |8 3 @_LO_LOYO @ 00| |

2lelefs]2]l O @O/ Ol 1000  _

slefsjeiniaj | | 10®1 Ji | | 10I®f |
Fig. 6.1 Fig. 6.2 | Fig. 6.3

7. Unicursal Graphs. A mixed linear graph G = [N; 4] will be

called unicursal if there exists a closed route in G that contains each arc
of G once and only once, and each node of G at least once. Here the phrase

"closed route' means a sequence of nodes and arcs that has the form

yo



(7.1) xl, (xl, x2), X, (xz, x3), cee, (x x

n-1 X1 *r

Thus a closed route differs from a directed cycle in that the nodes of
(7.1) need not be distinct; but any directed arc encountered in traversing
a closed route will be traversed with its direction, as for a directed
cycle. To avoid special statements, we also stipulate that a single
node is a closed route. Hence the graph consisting of one node and no
arcs is unicursal.

The study of graphs had its origin in unicursal problems; in
particular, Euler's celebrated problem of the "bridges of Konigsberg"

{ ] . Necessary and sufficient conditions that a given graph G be
unicursal are well known in case G is either directed or undirected. In
this section we shall use flow theory to derive such conditions for mizxed
graphs. These conditions contain as special cases those for the directed
or undirected case.

To state Theorem 7. 1 below, we require one other elementary
notion about graphs that has not been previously glaborated, that of
connectedness. For our purposes here, we may say that two distinct
nodes x and y of a graph G are connected if there is a path in G from x
to y (and hence from y to x). This defines an equivalence relation on
the nodes of G, and therefore partitions N into connected classes

Nl’ PR Np which have the properties (1) every two nodes of the

¢



same class are connected, (2) there is no arc in G joining nodes of distinct
classes. Ifp = 1, the graph G is connected; that is, every two nodes of
G are connected. * Thus every graph G splits up into connected subgraphs

Hl’ H2’ ceny Hp. Here H, is the subgraph of G consisting of all nodes of

i
the i—th equivalence class Ni’ together with all arcs of G that join nodes
of this class.

It is clear that a necessary condition for unicursality is that the
graph be connected. Another obvious necessary condition is that every
node of the graph be incident with an even number of arcs, since a closed
route leaves a node as often as it enters it. For undirected graphs, these
two necessary conditions are also sufficient. For directed graphs, the
latter condition must be replaced by the stronger one that the number of
inwardly directed arcs is equal to the number of outwardly directed arcs

at each node, in order to obtain necessary and sufficient conditions for

unicursality.

Theorem 7.1. The mixed graph G = [N; 4] is unicursal if and

only g
(a) G is connected;

(b) every node gf G is incident with an even number gf arcs,;

"G might better be said to be "'weakly' connected, reserving the
notion of "strong'' connectedness for a graph in which there is a chain
from any node to another. Actually, it is immaterial whether (a) of
Theorem 7.1 is stated in terms of strong or weak connectedness.



(c) for every X C N, the difference between the number of directed

arcs from X to X and the number of directed arcs from X to X is less than

or equal to the number of undirected arcs joining X and X.

Notice that in case G is directed or undirected, the conditions of
the theorem reduce to those stated above for these cases. We now prove
Theorem 7.1. Again necessity gives no difficulty. To prove sufficiency,
one can proceed by establishing a circulation in G, then directing some of
the originally undirected arcs according to this circulation.

In particular, first replace each undirected arc of G by a pair of
oppositely directed arcs, obtaining a directed graph G1 = [N; 01] . Define

lower bounds and capacities for arcs (x, y) in al by
(7.2) clx, y) = 1, (x, y) e Ay,

1 if (x, y) is a directed arc of O,
(7.3) Ux, y) =

0 otherwise.

Then hypothesis (c) of the theorem is equivalent to (3. 3) of the circulation
theorem, and hence there is a feasible circulati«:;n fin G 1 This circulation
may further be assumed integral, hence f(x, y) = 0 or 1. Now orient

some of the undirected arcs of G as follows. If (x, y) is an undirected

arc of G and if f(x, y) = 1, f(y, x) = 0, direct the arc from x toy. This
yields a mixed graph G, = [N; az] , which has properties (a), (b) of the

theorem, and also (c') the number of inwardly directed arcs equals the

¥3



number of outwardly directed arcs at each node. It now suffices to
establish that G2 is unicursal. To do this, one can proceed by induction

on the number of arcs of such a graph. If G, has no arcs and is connected,

2

it consists of a single node, and is unicursal. Assume that a graph having
properties (a), (b), (c') and fewer than m > 0 arcs is unicursal, and

consider such a graph G_ having m arcs. By (b) and (c'), the graph G

2 2

contains a closed route that visits more than one node. Delete the arcs
of this closed route, yielding a graph G'2 that satisfies (b) and (c'), and

consider the connected pieces of G'z. Each piece satisfies (a), (b), and

(c'), has fewer than m arcs, hence is unicursal by the inductive assumption.

Since G2 is connected, each of these unicursal pieces has at least one

node in common with the closed route. It follows that G, is unicursal, as

2
was to be shown.

It may also be observed that in application to any mixed graph
satisfying (a) and (b), the simplest method of testing for unicursality
is probably to set up the problem in flow form and attempt to construct
a feasible circulation by the method of section 3. If there is no feasible

circulation, then the method yields sets X and X for which the hypothesis

(c') fails to be satisfied.

8. Dilworth's chain decomposition theorem for partially ordered

sets. Let P be a finite partially ordered set with elements 1, 2, ..., n

and order relation " > '. A chain in P is a set of one or more elements



il’ i2, coey 'Lkwith

(8.1) PIRE IR PS SEETIR G

(If we associate a directed graph with P by taking nodes 1, 2, ..., nand
arcs (i, j) corresponding toi > j, this notion of a chain coincides with
the notion of chain in the graph, except that now we allow a single node to

be a chain.) A decomposition of P is a partition of P into chains. Thus

P always has the trivial decomposition into n l-element chains. A
decomposition with the smallest number of chains is minimal.
Two distinct members i, j of P are unrelated if neither i * j
nor j > i. Notice that the maximal number of mutually unrelated elements
of P is less than or equal to the number of chains in a minimal decomposi-
tion of P, since two members of a set of mutually unrelated elements cannot
belong to the same chain. The finite case of Dilworth's chain decomposi—
tion theorem asserts that actually equality holds in the inequality just stated {
Example. In the partially ordered set depicted in Fig. 8.1, all
arcs are oriented downward and arcs correSpondir;g to relations implied
by transitivity have been omitted. The heavy lines indicate a decomposi—
tion into three chains and the three circled nodes are a set of mutually
unrelated elements.
Dantzig and Hoffman have shown how to formulate the problem
of finding a minimal decomposition of a partially ordered set as a

linear programming problem, and have deduced Dilworth's theorem from



duality theory | ] . Here we shall establish the connection between
this theorem and the Kénig—Egerviry theorem. It will follow that the
problem of constructing a minimal decomposition can be solved by the
algorithm of section 5 | ].

Given the partially ordered set P = {1, 2, ..., n}, let
G =[S, T; @] be the bipartite graph consisting of 2n nodes S = {xl’ . xn} ,
T = {yl, ceny yn} , and arcs defined from P by fhe rule: (xi, yj) ¢« X if
and only if i > j. Using the language introduced in the array version of
Theorem 4.1, we shall refer to independent sets of arcs and covering sets

of nodes in G. A covering set of nodes is proper if no subset is itself

a cover.

Lemma 8.1. Corresponding to any independent set Jc a

there is a decomposition A of P with L] + |al = n.




Proof. Let

(8.2) J={(xi,yi ), (xi,yi ) R ¢ 3 A

1 2 3 4 tok-1  t2x
Thus
. 3 > s - 2 .. : > '3
(8.3) 1,7 1,1, e 1, R TG P
in P, and we may group the distinct elements of the set {il, caey izk}

into chains, each containing two or more elements. These chains are
disjoint, since < is an independent set of arcs in G. By adding to these,
as one element chains, all elements of P that do not already appear, a
decomposition A of P is obtained. If the number of elements of P that
are in the j—th chain of A is 1]., it follows that

lal lal
(8.4) n==2 #2,==L (. -1+lal =18 +lal,

g1 1 ge1
since lj — 1 counts the number of arcs of { that are used in forming the
j—th chain of A.

Notice that the proof of Lemma 8.1 does not make full use of

the assumption that P is partially ordered. Indeed, Lemma 8.1 is

valid for directed graphs that contain no directed cycles.

Lemma 8.2. Corresponding to any proper cover X C § v T,

there is a set U C P of mutually unrelated elements with Ix| +|ul =n.

«?



Proof. Let

(8.5) X = {X. , coey X, 5 Viy coes ¥i )
4 R T Im

be a proper cover. The elements of the set of indices in (8. 5) are

distinct, for suppose i, = jl’ say. Since X is a proper cover, there is

1

an x_ { X with x_, ¥; ) ¢ L ; similarly there is a Vg ¢ Xwith(x, , y.) ¢

1 1
Then, by transitivity and the assumption that il = jl’ it follows that

(xr’ ys) ¢ Q. This contradicts the assumption that X is a cover, and
thus implies that the elements of the set {i UREEE ik’ jl’ ceiy jm} are
all distinct. Now let U be the complement in P of this set. Since X is a

cover, the elements of U are mutually unrelated, and n = x| + |ul.

Dilworth's theorem now follows from the lemmas and Theorem
4.1. For let -ﬁ be a maximal independent set, X a minimal cover, and
let 2, U be their respective correspondents in P. By Theorem 4. 1,
|:9\.| = I}?l, hence, by the lemmas, lal| = Iﬁl But, as we have observed,
lul < la| for a1 U and a.

It is true, conversely, that Dilworth's theorem implies Theorem
4.1. This can be seen by making the given bipartite graph G =[S, T, d]
into a partially ordered set by defining, for xe¢ S, y ¢ T, the relation
x * y corresponding to (x, y) ¢ Q. The desired implication now follows
from the following two easily checked statements: (1) corresponding to any

decomposition A of P, there is a set of independent arcs 4 of G with



lal + |l = |s uTl; namely, let { be the two element chains of 4;
(2) corresponding to any set U € P of unrelated elements, there is a
cover X of G with IUI + |X| < IS V) Tl, for the complement of U contains
a cover.
From the proofs of the lemmas, it is clear that the algorithm
described in section 5 can be used to construct a minimal chain decomposition

and a maximal set of mutually unrelated elements.

Example (continued). For the partially ordered set of Fig. 8.1,
the equivalent array problem is schematized in Fig. 8. 2. The assignment

of 1's shown there, obtained using the starting procedure suggested in

vy v

1 2 3 4 5 6 7 8 9
1| x| x| 1 X
2| X | x| x| 1 X
3| XX xXx|x{x]|1 6
4| X | x| x| XX x| 1|x]| 8
5 x| x| x| x| x| X|X|[X]| 1] 69
6| X | X|X|X|X|X]|X X| -
T xIx[x|x|xXx|X|X -
sl X |X|X|xXx|X|X|X|X]|X]| -
ol x|x|{x|x|X|x|X|x|Xx]| -

' N
w
(<]
-3

Fig. 8.2
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section 5, corresponds to the chain decomposition {1, 3, 6; 2, 4, 8, 5, 9; 7}.
The labeling shown breaks through to column 7. After making the indicated
switch, we obtain the new decomposition {1, 3, 7; 2, 4, 6, 8; 5, 9} con—
taining one fewer chain. The next labeling produces labels on rows

5, 6, 7, 8, 9 and columns 8, 9 without breakthrough. Consequently the
unlabeled rows 1, 2, 3, 4 and labeled columns 8, 9 are a minimal cover,

and hence the '"'missing'' elements 5, 6, 7 form a maximal mutually

unrelated set.

9. Minimal number of individuals to meet a fixed schedule of

tasks. As an application of the maximal flow computation for a minimal
chain decomposition of a partially ordered set, consider the problem of
finding the fewest number of individuals required to meet a fixed schedule

of tasks. Suppose there are n tasks T, with stipulated starting times a,

i
and finishing times bi (ai < bi) and that reassignment times from Ti to
Tj are given by numbers rij > Ofori = j. How many individuals are
needed to perform all tasks on schedule?

For example, the individuals might be ma.'chines of a given type,
and rij might represent the set—up time necessary, having finished Ti’
before Tj can be started. Or the individuals might be airplanes, say, the
Ti scheduled flights, and rij the time required to return from the point of
destination of flight 'I‘i to the point of origin of flight Tj [ ].

Making the reasonable assumption that



(8.1) r. <r . +r,

it is eaBsy to see that the T, can be partially ordered by defining

i

(9.2) T, > Tj if and only if b, +r

< a,
-— J’

ij
and that, in terms of this partial ordering, a chain represents a possible
assignment of tasks to one individual. Thus we are seeking a minimal
chain decomposition of this partially ordered set.

It follows from Dilworth's theorem that the fewest number of
individuals required is equal to the maximal number of tasks, no two of
which can be performed by the same individual.

One special case in which a minimal chain decomposition can be
found by a simple decision rule, without recourse to an iterative procedure
like the labeling process, is that in which the el ements of the partially
ordered set can be numbered 1, ..., nin such a way that i < jimplies
that the predecessors of i are inch;ded in those of j. In terms of the
corresponding array, this is equivalent to saying that the rows and columns
can be rearranged so that the set of inadmissible‘ cells has "echelon' or

"gtaircase' form (see Fig. 9.2). Assuming they have been so arranged,

the following rule solves the problem.

Staircase rule. Select any admissible cell that borders the staircase

of inadmissible cells and place a 1in it. Delete the corresponding row and

¢ {



column and repeat the procedure. (Here 'border'' means "have a segment

in common. ")

Notice that the inadmissible cells of the reduced problem have
staircase form, so the rule makes sense.

At termination of the process, a minimal cover can be found
simply by selecting as many consecutive rows as possible that contain
1's (starting from the top), then switching to columns to cover the
remaining admissible cells, if any.

In terms of the partially ordered set, the rule might be phrased
as follows. Assuming that the set has been numbered as stipulated

above, select an undominated element (e. g., element 1), then proceed to

its first (in terms of the numbering) successor j, then to the first successor

k of j, and s0 on until an element having no successor is reached. This
traces out one chain of a minimal decomposition; delete the elements of

this chain and repeat the process.

Example. In the partially ordered set shown in Fig. 8.1, or in

1 1 2 34 5 6 7
1 (x|} _
o 3 3(x|x|x]1
yix|xi{x|x|1
3 2ix{xix|x|x]2
5IX({X[X|X|X|X
6 5 6ixix|x|xix|x]1
Tix|x|x|x|[xIx|X
7 _
Fig 92

Fig 91
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array form in Fig. 9.2, the rule leads to the minimal decomposition
{1, 2, 6, 7; 3,4, 5}. A minimal covering in Fig. 9. 2 consists of row
1 and columns 4, 5, 6, 7; this singles out 2 and 3 as a maximal set of
unrelated elements.

A proof that the rule works for problems having staircase form can
be based on the fact that inany proper covering of the admissible cells
for such a problem, an admissible cell bordering an inadmissible cell is
covered by just one line. (For example, the proper coverings in Fig. 9.2
are: last six columns; first row, last four columns; first two rows, last
three columns; first three rows, last two columns; first four rows, last
column; first six rows.) We omit the details of a proof; the interested
reader will have no difficulty constructing his own.

A sufficient condition for a task scheduling problem to have stair—

case form is that the reassignment times r, be given by rij =c + d

i ¥y

for then it is possible to reassign from Ti to T, if and only if the

J

"effective finishing time" bi + ¢, of Ti does not exceed the ''effective
starting time"' aj - dj for Tj' Hence if the tasks are numbered according

to increasing a.j — d,, the predecessors of successive tasks will be nested.

j’
It can be seen, conversely, that any partially ordered set having the
property of nested predecessors can be realized as a task scheduling
problem in which all rij = 0. Thus the rule we have given for constructing

a minimal chain decomposition of such a partially ordered set is, to say



the least, plausible.

More difficult combinatorial problems along these lines emerge if
the requirement that the schedule of tasks has been fixed in advance is
dropped. For example, one might consider tasks T URRE Tn with known

timest,, ..., tn to perform each task, stipulated reassignment times

P
rij’ and pose either of the following questions: (a) assuming that all
tasks must be completed by time T, arrange a schedule that requires the
fewest number of individuals; (b) assuming a fixed number of individuals,
arrange a schedule that completes all tasks at the earliest time. The
problem statement might be further complicated by the assumption of
technological ordering restrictions, e.g. washing a dish precedes drying
same, or by the assumption of different types of individuals, e.g. dish
washers and dish dryers. As far as we know, no computationally good
ways of solving problems of this genre are known, although some special
results have been deduced. For instance, Johnson has given an elegant
solution to a problem of type (b) above in which there are two individuals,
w (the washer) and d (the dryer), 2n tasks W

, Wn’ ’ D ’

1 p oo P
with the restrictions that Wi must precede Di and that w specializes in W's,
d in D's; the reassignment times from Wi to Wj or from Di to Dj are

assumed zero [ ].

10. Set representatives. Let

o = {Sp s sn}



be a family of subsets of a given set
E = {el, ..., e_}.

A list R of distinct elements of E,
R={ei,ei,...,ei}

1 2 n

is a system of distinct representatives (customarily abbreviated SDR)

for J if

and e is said to represent S..
j 3
Example. 1. Let E = {1, 2, 3, 4, 5}, and suppose A is composed
of S, = {2, 4,5}, S, = {1, 5},5, = (3, 4}, S, = {3, 4}. Then

R = {5, 1, 3, 4} is an SDR for < in which 5 represents S_, 1 represents

1,

S,., and so on.

2’

Example 2. LetS, = {1, 2}, S, = {2},_53 = {2, 3, 4, 5},

S4 = {1, 2}. Here there is no SDR, since S_, S

1 Sg S4 contain between

them only two elements.

Example 3. Let the fundamental set E consist of all U. S. Senators
and let Sl’ cey Sn be an enumeration of Senate Committees. Can one

find n distinct Senators € 5 ey € such that Senator e is a member

1 n J



ST

of Committee SJ.?

Example 4. Suppose there are m men and n women, and that
woman j rates man i as matrimonially admissible or inadmissible. When
is it possible to perform n marriages in such a way that each woman gets
a husband admissible to her?

Necessary and sufficient conditions for the existence of an SDR

are contained in the following well-known theorem of P. Hall [ ].

Theorem 10.1. An SDR exists for o = {Sl, Cee Sn} if and only

if every union of k sets of o/ contains at least k distinct elements,

k=1 ...,n.

As in the flow feasibility theorems, the necessity of the Hall
condition is of course obvious.

In this section we shall discuss some Hall-type theorems that
can be deduced from the flow feasibility theorems presented earlier in
the chapter. While each of these theorems can be regarded as a generali—
zation of Hall's theorem, it is perhaps misleadiné to emphasize this point,
since it is equally true that each can be deduced from Hall's theorem.
Indeed, one can show that the max flow min cut theorem is a consequence
of Hall's theorem; the proof is lengthy, but see [ ], for example,
where such a proof of the integral form of ‘the circulation theorem is

given.



Before proceeding to other set representative problems, we first
give a flow proof of Hall's theorem. Specifically, we shall show that the
sufficiency of Hall's condition is an immediate consequence of Corollary
1.2, the second version of the supply—demand theorem, and, of course,
the integrity theorem. To see this, define the bipartite network

G =[S, T; Q)] with
S = {xl, R | xm}’ T = {yl’ MR yn}’ a = {(xi’yj)lei( Sj}'

Associate a demand b(vj) = 1 with each node of T, a supply a(xi) =1
with each node of S. The capacities of all arcs may be taken infinite.
(See Fig. 10.1.) It is then clear that an integral feasible flow from Sto T

picks out an SDR for S , Sn, and conversely. (Since we are requiring

REE
only that f(S, yj) > 1, the same set may be represented more than once;

this poses no difficulties. )

Fig KO.I
If Hall's condition is satisfied, then for any subset T C T, there

are at least b(T') = |T'| nodes of S that are joined to nodes of T', and

(V3]



hence the flow fTa of Corollary 1.2 exists. Consequently the flow problem
is feasible, and »/ admits an SDR.
As corollaries of Hall's theorem, we mention the following sufficient

conditions for the existence of an SDR | ].

Corollary 10.2. Suppose Sj(j = 1, ..., n)contains sj elements,

that ei(i =1 ..., m) occursi_grio_fthe sets Sj’ and let
n m
S = jf sj = i}ilri, M = max(rl, ey Ty By ...,sn). If(n-1)M < S,

1
then = = {5, ..., S} has an SDR.

Proof. Suppose Hall's condition is violated, so there are k sets,

say S vy S

K’ that collectively contain £ < k elements. Then some
k

one of these £ elements must occur in p of the sets Sj’ wherept > I By
1

TURE

By assumption, we have

k n
S=L g + L s, > (n—-1)M,
1 9 k+1
and thus
n
pt > (n—-1)M- L s, > (n—1)M - (n—k)M = (k—1)M.
k+1 3

Since 1 < k — 1, we must have p > M, a contradiction.

Corollary 10.3. Suppose there are n elements e, and n sets Sj’

that each Si contains k > 0 elements and each ei occurs }_13 k sets. Then

oS = {s;, :-., 8} has an SDR.
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Proof. Immediate from Corollary 10. 2.
A reinterpretation and repeated application of Corollary 10. 3 yields:

Corollary 10.4. If A is an n x n matrix composed of the integers

0 and 1 withk > 0 1's in each row and column, then A is a sum of k

permutation matrices.

Suppose next that we drop the requirement concerning distinctness
of representatives, and insist instead that each element e i€ E must occur
in the system of representatives R at least a, times and at most ai' times,
where 0 < a, < a{. (Thus if a, = 0, ai =1 foralli =1, ..., m, this

reduces to the SDR problem.) We term R a system of restricted representa—

tives (SRR). In matrimonial terms, the problem is now a polyganous one

in which man i requires a, wives, but can handle at most ai wives.

i

The following theorem gives existence conditions for an SRR [ ].

Theorem 10.5. An SRR in which e, occurs at least a,, and at

i

most a,, times, (0 < a, < &), exists for o = {Sy ..., S_} if and

only if, for every subset X of the indices {1, ..., n},

m
(10.1) |X] < minta~ L a + L a, L a)

1 I(X) I(X)

Here I(X) € {1, ..., m} is the index set of U Sj'
jeX



Proof. The conditions (10. 1) are perhaps most easily discovered
by applying the symmetric supply—demand theorem to the network used in
the proof of Hall's theorem. This time we insist that the total flow out of
each node x, ¢ S (i = 1, ..., m)be at least a(x,) = a, and at most a'(xi) = ai',
and the flow into ¥ € T be precisely one, b(yj) = b'(yj) = 1. Againarc
capacities are infinite. Thus integral feasible flows and SRR's correspond
by the rule: f(xi, yj) = 1 if and only if e represents Sj'

Let X € S U T and define
SNX=U,SNX=U, TAX =V, TNZX =V,

go that U is the complement of U in S, and V is the complement of V in

T. Then conditions (2.5) of Theorem 2. 1 become
(10. 2) c(U, V) > IV| —a'(u), allUc s VT,

which holds automatically unless (U, V) = ¢.
If we extend the notations A(x), B(x) introduced earlier (I. 1), to
subsets X of nodes in the usual fashion, e.g. |
B(X) = U B(x),
xe X
then, for the case at hand, the statement (U, V) = ¢ is equivalent to
either of the statements B(V) c T or A(U) ¢ V. Using the former of

these, we see that the set of inequalities (10. 2) is equivalent to the set



(10. 3) V| < a'(B(V)), allV ¢ T.

N

Similarly, conditions (2. 6) of Theorem 2- 1 become
c(U, V) > a(U) = |V| =aW) —n + [V]|
foralUc S, VST, or
(V] <n-a(U) =n- a(S) + a(-ﬁ)

for all V C T, all U such that B(V) [ U ¢ S. Consequently the set

of inequalities
(10. 4) I¥] < n ~ a(s) + a(B)), allV ¢ T,

together with (10. 3), are necessary and sufficient for the existence of
(integral) feasible flows.

Translating (10. 3) and (10. 4) to set theoretic statements yields
(10.1).

Thus the inequalities

x| < £ a;
I(X)

are necessary and sufficient for the existence of an SRR in which each

e, can occur at most a'

i i times, while

m
Xl <n-Za + T a
1 I(X)

¢l
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are conditions for the existence of an SRR in which each e, must occur
at least 8, times.

Notice that taking a, = 0, ai = 1 in (10. 1) gives Hall's condition
for the existence of an SDR.
= 1fori =1 ...,1,say, a, = 0for

i i
i=g1 +1, ..., mandai' = lalli =1, ..., m, the SRR problem is that

In the special case that a

of determining conditions for the existence of an SDR containing the

o € Mann and Ryser [ ]

proved that such an SDR exists if, in addition to Hall's condition, every

prescribed set of marginal elements e

marginal element appears at least t times among the S e wheret > 0

is the largest number of marginal elements in any Sj' (They applied
this sufficient condition to prove an interesting theorem due to Ryser

[ ] that provides necessary and sufficient conditions for extending

an r x s Latin rectangle to an n x n Latin square.) The following theorem
of Hoffman and Kuhn replaces the Mann—Ryser condition with a necessary

and sufficient one [ ]l.

IRRRT Sn} that contains

a prescribed set M of marginal elements exists if and only if both Hall's

Theorem 10.6. An SDR for »/ = {S

condition and the following condition hold: for any M € M, the number

of sets Sj that meet M' is at least |M'|.

It is not difficult to see that the Mann-Ryser conditions imply



the Hoffman—Kuhn conditions.

The validity of Theorem 10. 6 can be seen from Hall's theorem
and the general principle enunciated in Corollary 2. 2. Applied here,
Corollary 2.2 implies that we need only check the fact that the Hoffman—
Kuhn condition is the feasibility condition for the problem obtained by
interpreting the lower bounds a(xi) (=1 or 0 according as X, € M or not)
as demands in the reversed network, and the upper bounds b'(y j) =1
as supplies. But the Hoffman-Kuhn condition is precisely the Hall
condition for feasibility in this situation.

Another necessary and sufficient condition for the marginal element
problem that involves selections only of subsets of o is given directly

by Theorem 10.35.

Corollary 10.7. AnSDR for »/ = {S,, .-, S} that contains

a prescribed set M = {ei g cvey ei } of marginal elements exists if and
1 1
only if, for every X ¢ {1, ..., n},

(10. 5) 1X] < min (-2 + LN 1X)|, (1)),

Here L = {11, ceey 11} is the index set of M and I(X) is the index set

of U 8S..
_jexj

One can extend the SRR problem by asking for conditions under

which a common SRR exists for two different collections
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o = {s, .-, S}
J = {Tl, ceey Tn}

of subsets of the fundamental set, and still have a flow feasibility problem [ ].
In matrimonial terms, the common SRR problem can be considered
to have the following far—fetched interpretation. There are n men

(correspondingto S, ..., Sn), n women (corresponding to Tl’ ceey Tn)

1’

and m marriage brokers (corresponding to e em). Each broker

o
has certain men and women clients, and must arrange at least a, and at

t

i
When is this possible?

most a, marriages; all men and women must be married monogamously.

Here the network (see Fig. 10.2) may be taken as follows:

Arc lower | Arc capacity
bound function ¢
Nodes Arcs function ¢

s, t (s, xj)j=1,...,n 0 1

S = {xl, cey xn} (xj,yi) e SJ' A-O 0
R‘{yl,...,ym} (yi, yi)i“l,...,m gi ail

' ' ' "

Ro={yy -y} 0y zj)<=>eie T, 0 P
T = {zl, ...,zn} (zj, t)j=1, ..., n 0 1
(t, S) n 00




ey

—
s R R T
s t
Fig. 10.2

One sees easily that a common SRR exists for »/ , </ if and only

if this network admits a feasible circulation; hence, by Theorem 3. 1, if

and only if the inequalities )

e(X, X) > 11X, X)

hold for all subsets X of the nodes. To see what these inequalities reduce

to for our particular network, let

SNXsu, sNX-=Ty,
RNX =V, RNX =V,
R'N X =V, R'NX =V,
TNX =W, TNX =W

and begin by considering cases.



Case 1. s¢ X, te X. Then

(X, X) = c(s, U) + c(U, V) + c(V, V) + c(V', W),

(X, X) = £(V, V')

Case 2. B e X, te¢ X. Then

c(X, X) = cls, U) + (U, V) + clV, V) + eV, W) + c(w, t),

(X, X) = £(V, V') +n.

Case 3. s¢ X, te X. Then c(X, X) includes the term c(t, 5) = ®;

consequently this case may be ignored.
Case 4. 5 ¢ .)E, te X. Then

e(X, X) = (U, V) + c(V, V) + c(V', W) + c(W, t),

01X, X) =1(V, V').

Next observe that the inequalities c(X, X) > 1 (X, X) of Case 1are
dominated by those of Case 2, since c(W, t) = |w | < n. Similarly Case 4
inequalities are dominated by Case 2, since c(s, U) = Ul < n. Thus a

feasible circulation exists if and only if
1T + U, T) + c(V, V) + (v, W) + [W| > £V, V') +n,

or



(10.6) |W| + |Ul < n +cU, V) +c(V, ¥) + c(V', W)—2(V, V),

forallUc S, VCc R, V'c R, W« T.

Again (10. 6) is automatic unless the sets of arcs (U, V) and (V', W)
are empty, that is, unless A(U) ¢ V and B(W) -t V'. Then the right side
of (10.6) is, if anything, decreased by taking V = A(U)and V' = B(W).

Thus, replacing W by W, (10. 6) is equivalent to
(10.7)  |wl + lul < n + cla(), Bw) - 1(A), BW)),
forallUc S, W < T.

This proves [ ]

Theorem 10.8. A common SRR in which ei(i =1, ..., m)occurs

at least a, times and at most ai' times (0 < a, < ai') exists for
» = {S;, ..., S }and J = {T,, ..., T} if and onlyif, for every

X,Yc {1 ...,n},

m N
(10.8) x| +|¥l <n-Z a + La .+ La
1 (X)U KY) IX)N I(Y)

\

Here I(X) ¢ {1, ..., m} is the index set of U Sjg_n_d_I(Y) c {1, ..., m}
JeX
thatof U T..
jeY J

By takinga, = 0, a' = 1in Theorem 10. 8, conditions for the

i

existence of a common SDR are obtained | ].



Corollary 10.9. A common SDR exists for /' = {S,, ..., S )

and /' = {T,, ..., T } if and only if, for every X, Y ¢ {1, ..., n}
(10. 9) Ix| + |yl <o+ l1x) n 1.

Here I(X) is the index set of U S, and I(Y)thatof U T
jex I ey 3

We conclude this section with the statement of one other set
representative problem that can be solved as a flow feasibility problem:
to find conditions for the existence of an SDR whose intersection with each
member of a given partition of the fundamental set has cardinality between
assigned bounds. This problem was posed and solved by Hoffman and Kuhn,

who showed that it can be formulated as a linear program, and existence

conditions established from duality theory [ ].
Theorem 10.10. Leta and al’(, k =1, ..., p, satisfying
0 < a, < al'{, b_e integers associated with a given partition Pl’ RN Pp

of a given get E = {el, cocy em}. The subsets S,, ..., S of E havea

1’
system of distinct representatives R guch that 8, < Ir n Pkl < al'{ if

and only if

(10. 10) I( up )N (j:)V Sj)l > max ([VI-Za, [Vl-n+E a)

1) U

*

JeU

holds foral U ¢ {1, ...,p} andV c {1, ..., n}.

A representing network for this problem may be taken as follows

(see Fig. 10. 3):

3]
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Nodes Arcs Arc capacities
S = {xy -+, xp} (g, y)&=e ¢ P, 1
R = {yl’ ..-,ym} (yi, ZJ) = eie Sj 0
T = {zl’ ey zn}

Associate with each X, ¢ S the bounds a8, al'( on flow out of X0 with each

)

z, ¢ T the bounds bj = b' = 1on flow into zj.

J

Theorem 10. 10 then

follows from the symmetric supply—demand theorem.

3
1l
0
f

+

ig. 10.3

Thus, taking the first term on the right of (10. 10), one has

conditions for the existence of a system of distinct representatives R such

that [RN P | < e

an R satisfying IR N Pkl > a

k

k'

; the other term provides existence conditions for
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11. The subgraph problem for directed graphs. Another graph

theoretic combinatorial problem that can be dealt with by flow methods is
one known as the subgraph problem for directed graphs. A solution to
this problem has been given by Ore [ ] . Various special cases have
also received considerable attention in the mathematical literature.

Here we shall use the symmetric supply—demand theorem to discuss
a slight extension of this problem | ].

Let G = [N; @] be a finite directed graph, and let e(x) and i(x)
be, respectively, the number of arcs entering and the number of arcs
issuing from node x. Then the (local) degree of G at x is the pair e(x),
i{x). The subgraph problem for G is that of determining conditions under
which G has a subgraph H having prescribed local degrees. Here a
subgraph H of G is a graph H = [N; Q'] with @' ¢ Q.

Consider the following generalization of this problem. Associate

with each x ¢ N four integers .

a(x), a'(x), b(x), b'(x)

satisfying
(11.1) 0 < a(x) < a'(x),
(11. 2) 0 < b(x) < b'(x),

and find conditions under which G has a subgraph H whose local degrees



eH(x), iH(x) satisfy
(11. 3) alx) < iglx) < a'(x),
(11.4) blx) < ey(x) < b'(x).

To determine such conditions, we convert the problem to a flow
problem and apply Theorem 2.1. First construct from G a bipartite
graph G' =[S, T; @'] having twice as many nodes as G but the same number
of arcs: to each x ¢ N correspond two nodes: x'eS,x"eT, if (x, y)e @
then (x', y'") ¢ @', and these are all the arcs of G' (see Fig. 11.1). Assign
unit capacity to each arc of G', and insist that the flow out of x' ¢ Slie

between a(x) and a'(x), the flow into x" ¢ T lie between b(x) and b'(x).

.

S T
| 2 ! ‘
2| 2"
3' "
3 4 . 3
4 4 "

Fig. 111

It is clear that an integral feasible flow f from Sto T in G' yields
a subgraph H of G satisfying (11. 3), (11.4) by putting (x, y) in H if and
only if f(x', y') = 1, and conversely. Hence, letting U, V be arbitrary

subsets of S, T, respectively, and denoting their respective complements
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in S, T by -ﬁ, V, it follows from Theorem 2.1 that H exists if and only if
(11.5) a'(U) + [, V)| > b(V),
(11. 6) b'(V) + [(U, )] > a(W),

hold foral U¢ S, V ¢ T.

Before proceeding further, let us consider inequalities (11.5) for
a(x) = a'(x), b(x) = b'(x), that is, in the case for which the local degrees
of H are specified exactly. Then a necessary condition for H to exist

is that a(N) = b(N), or, in G,
(11.7) a(s) = b'(T).
On the other hand, (11.7) and (11. 6) now imply (11.5), since

a@) + (U, V)| > a() + a(y) - b'(V) = a(s) = bV)

> b'(T) = b'(V) = b'(V),

which is (11.5) witha' = a, b' = b.
Thus (11.7) and (11. 6) are necessary and sufficient for the
existence of a subgraph H having local degrees e (x) = b'(x), i, (x) = a(x).
Each of the conditions (11.5), (11.6) is stated in terms of
selections of pairs of sets. Each can, however, be simplified to a condi—
tion involving the choice of but one set. Consider (11.6), for example.

For given U C 5, let



v={"eTI|Iby" < l, y"i}.

For this pair U, V, the left hand side of (11. 6) may be written as

L min(b'y"), 1(U, y"I].
y' e A(U)

On the other hand, for fixed U € S, this sum minimizes b'(V) + (U, V)

over all V ¢ T. Thus inequalities (11. 6) are equivalent to the inequalities

(11.8) L min[b'(y"), [(U, y")I] > a(U), allU ¢ 8.
y'" e A(U) -

Similarly, (11.5) reduces to

(11.9) L _ min[a'y), l¢', M1 > bV, alV c T.
y'e B(V)

Thus, translating (11.8) and (11. 8) to conditions stated in terms

of the given graph G, we have the following theorem [ ].

Theorem 11.1. Let G = [N; @] be a directed graph and suppose

that, corresponding to each x ¢ N, there are integers a(x), a'(x), b(x),

b'(x) with
(11. 10) 0 < a(x) < a'(x),

(11.11) 0 < b(x) < b'(x).
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Then G has a subgraph H whose local degrees eH(x), iH(x) satisfy

(11.12) alx) < iLlx) < a'lx),
(11.13) b(x) < eH(x) < b'(x),

if and only if, for all X ¢ N, we have

(11.14) aX) < L minl'y), I »l1,
y ¢ A(X)

(11. 15) b(X) < L ‘min{a'ly), |y, X)1].
y € B(X)

In view of the remark that (11.6) and (11.7) are necessary and
sufficient for the existence of a subgraph H having prescribed local

degrees, we may also state a theorem of Ore | ].

Corollary 11.2. The directed graph G = [N; 2] has a subgraph

H with local degrees

(11. 16) i) = a) > o,
(11.17) ey(x) = b(x) > 0,
if and only if

(11.18) a(N) = b(N),



(11. 19) a(X) < L  minlb'y), X, »il.
T ye Ax)

Notice also, as a consequence of Corollary 2.2, that if G has

subgraphs Hl’ Hz such that

bx) < e (x), i, (x) < a'x)

H

Hl 1

e.. (x) < b'(x), afx) < i

- (x),

2 H,

then G has a subgraph H such that
alx) < ig(x) < a'(x),
b(x) < e (x) < b'(x).

For undirected graphs G, the (local) degree of G at x is the
number of arcs incident with x, and the subgraph problem is that of
determining conditions under which G has a subgraph H with specified
local degrees. This problem has been solved by Tutte | ], and also
by Ore [ ] . In contrast with the directed case, we know of no

formulation of the undirected problem as a flow feasibility problem.*

*

One could, of course, attempt to formulate the problem as a
linear program of more general type. A way that suggests itself is to
associate a variable bounded between 0 and 1 with each arc of the graph,
impose the restriction for each node x that the sum of all variables

corresponding to arcs incident with x should not exceed the specified degree

of H at x and ask for a feasible solution that maximizes the sum of all
variables. The difficulty here, however, is that fractional solutions to
the program can be obtained if the given graph G has odd cycles; that is,

75



12. Matrices composed of 0's and 1's. An m by n matrix whose

entries are the integers 0 and 1 can be regarded as distributing n elements
into m sets: the 1's in row i designate the elements that occur in the
i—th set, and the 1's in column j designate the sets that contain the j—th
element. In other words, the matrix may be thought of as an incidence
matrix of sets vs. elements. Such matrices are thus of fundamental
importance in combinatorial investigations.

Ryser has focused attention on the class of all m by n (0, 1)}-matrices

having prescribed row and column sums, and has obtained a number of

results that give insight into the combinatorial structure of the class | ].

Some of these results are accessible through the use of network flows;
others appear not to be.
The first question that naturally arises for such matrices is:

when do they exist? That is, given nonnegative integers a a

Pt B
. bn’ when does there exist an m by n (0, 1)-matrix having

andbl, .

the important integrity property of maximizing solutions has been lost.

Of course the fact that a first naive statement of the problem
leads to fractional solutions does not in itself imply that other linear
programming formulations might not be useful. For instance, it can
be shown that the convex polyhedron of flows in arc—hain form (I. 2)
has fractional vertices, but this is not true when the problem is put
in node—arc form. Similarly, an attempt to pose the minimal chain
decomposition problem for partially ordered sets in terms of the node—
chain incidence matrix of the corresponding directed graph runs into
the difficulty of fractional extreme solutions. But useful information
about the combinatorial problem can be obtained from a different
formulation, as we have seen.

76
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and Gale[ ] independently answered this question. Not only do

1's in the i—th row and bj 1's in the j~th column? Both Ryser [ ]

existence conditions here turn out to be much fewer in number than one
might expect, but also a simple rule can be stated for constructing such
a matrix.

Suppose we pose the existence problem in inequalities form,

asking for a (0, 1)}-matrix A = (ai j) such that

(12.1) L a,>b,

12. 2 .
( ) jfl alj

IA
®

In case & a = b j’ the problem is that of filling an m by n array with
0's and 1's 8o that the i~th row sum is a, and the j~th column sum is bj'
For a concrete example, consider n families to be seated at m

tables, where the j—th family has b, members and the i—th table a; seats,

J
in such a way that no two members of the same family are seated at the
same table. A

The existence problem (12. 1), (12. 2) for (0, 1)-matrices can be
treated as a flow feasibility problem by setting up the bipartite network

consisting of nodes

S = {xl’”" xm}’ T = {YI! cevy yn}’



I

and arcs
a={(xi,yj)}, i=1 ..., m; j=1,...,n

Associate a demand b(yj) = bj with the j—th node of T, a supply a(xi) = a
with the i—th node of S, and impose unit capacity on all arcs. Then
feasible integral flows f(xi, yj) and (0, 1)-matrices (aij) satisfying (12. 1)
and (12. 2) correspond via aij = f(xi, yj).

If we use the second version of the supply—demand theorem
(Corollary 1. 2), we need to determine, corresponding to each T' ¢ T, a
flow fT' that maximizes (S, T'), subject to the supply limitations at the

sources S. Now f(S, T') is maximized simply by sending as much as

possible from each x, ¢ Sto T'. Thus, if IT'| =k,
fT.(xi, T') = min(ai, k)
and
m
(12. 3) (S, T') = £ min(a,, k).
i=1 :

Suppose we picture the integers a, as represented by rows of

dots, for example:
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Let a; denote the number of dots in the j—th column of the

*) are conjugate

J

partitions of the integer L a, that is, a; is the number of a, that are

pictorial representation. Thus the sequences (ai) and (a

greater than or equal to j. Then it is apparent that

m k
(12. 4) L min(a,6 k) = L a.
i=1 1 j=1

Thus the problem is feasible if and only if

lT|
(12.5) b(T') < T a]
=1

holds for all T' ¢ T. Since the right side of (12.5) depends only on the
cardinality of T', we may replace all the inequalities obtained by letting

T' range over subsets of k elements with just one: that obtained by
selecting T' to maximize b(T'). Thus (12.5), for all T' ¢ T, is equivalent

to the n inequalities

K K
(12.6) Lb < L a, k=1,...,n,
j=1 J - j=1 J . '

where we have chosen the notation so that b1 > l:.2 > ... > bn'

This establishes the following theorem [ ].

Theorem 12. 1. Letai(i =1 ..., m)andbj (=1, ..., n)

be two sets of nonnegative integers, whereb, > b, 2 ... > bn' Then



there is an m x n (0, 1)}-matrix A = (aij) satisfying

(12.7) La,>b, }:.Zaij < ai,

if and only if

k k
(12.8) Elbj < L a;, k =1, ..., n),
jg J‘l

where a = i 1a >3}l
Easy consequences of Theorem 12.1 are

Corollary 12.2. If b, = b for all j, there is a (0, 1)}-matrix

3
n
satisfying (12.7) if and only if nb < L a;.
j=1
Corollary 12.3. If a =a for all i, there is a (0, 1)-matrix

n
satisfying (12.7) if and only i{f L b < ma, b.‘i < m.

k
Proof of Corollary 12.2. We need to show thatkb < I a; for
n 1
k=1 ...,n—1 Nowknb < k & aJ’,t by assumption, so it suffices to

! k

w

1 1 9 k+1 1

This inequality follows from the fact that the sequence (a;) is monotone

n 4 n
establishk T a; < n L a), whichis equivalentto k E a} < (n-k) L a;

decreasing, since

n , k
k L a*<kin-kla* < (n-k)ka*® < (n—k L a}.
k+1 3~ B+1 = Bx ;3

7o



%l

Proof of Corollary 12. 3. The inequalities

m

K k
Lb, < La; = L min(a, k) = m min(a, k)
11713

n k
follow from Ebj < ma arxdb;i < m. Forifk < a, tl'xer“‘.‘.bj < mk =

1 1

m min(a, k), if, on the other hand, k > a, then}l.ibj < }r::bj < ma =
m min(a, k).

Although we have used the second version of the supply—demand
theorem in deriving the existence conditions (12.8), we might just as
well have used the first version, or applied the max flow min cut theorem
directly. The resulting existence conditions are worthwhile stating
explicitly, since they involve the ''structure matrix" that has proved to
be of fundamental significance in the study of (0, 1)-matrices having
specified row and column sums | ] . Ryser has defined the structure
matrix (tkl)for the class Ot = O((al, EEPR S PURE +»'b ) of all m by n
(0, 1)-matrices having monotone decreasing row and column sums

a, and b, tobe the m + 1by n + 1 matrix

i i

(12.9) tk1 = k¢ +ak+1+... +am—(b1+... +b1)

k =0,1, ..., m;t =0, 1, ..., n)

If the class OXis nonempty, then it can be seen directly that the tk P

are nonnegative integers. For we may select a matrix A in O and



Y4

partition it thus:

(12. 10)

Here A, is k by . It follows that t , defined by (12. 9) is equal to the

1 ke
number of 0's in A1 plus the number of 1's in A2. It is true, conversely,
that the nonnegativity of the structure matrix implies that the set Ot is

nonempty. To see this, one can use the first supply—demand theorem.

Applied here, this theorem asserts that Of is nonempty if the inequalities

(12.11) b, -~ La < |1} |J]
I

hold for all selections of subsets I ¢ {1, ..., m} , J ¢ {1, ..., n}.
But for I and J of fixed cardinalities k and £, respectively, the left side
of (12. 11) is maximized by selecting J = {1, ..., 2}, T={k+1, .. , m},
in view of the assumptions a, > aé >0 a b1 > b2 2 02> bn.
Then (12. 11) is the statement that the entries of the structure matrix for
the class Or are nonnegative.

Gale has given a simple, direct n—stage rule for constructing
a (0, 1)-matrix satisfying the row and column sum constraints (12.7) in
case the problem is feasible [ ] . Suppose that conditions (12. 8) are
satisfied and that we assign the ones in column P in some arbitrary

fashion, say to the subset of rows I = {il, c++y 4} Let ;i’ i=1 ..., m,
p



and I_)'J,, j =1, ..., n—1, denote the upper and lower bounds on row and

column sums in the reduced problem, so that

_ ai -1, ifiel,
ai =
a,, otherwise,
- bj’ j=1,...,p—1,
b. =
J b j = n-—1
j+1! J p’ R | ¢

By Theorem 12. 1, the reduced problem is feasible if and only

if
k k _

(12.12) Lb, < Ea;, k=1, ..., n—1,
j=1 J j=1

where (;;) is the conjugate sequence to (Ej). Now the right side of (12. 12)

can be rewritten as

k
* _ »*
Laf-b, +ap, O,

where al:ﬂ(l) is the number of a, such that i ¢ I and a, > k +1. Con—
sequently the feasibility conditions for the reduced problem are
k k

12.13) Ib +b < I a*+a* . ) k
¢ j=1 J P T je1 J k+1 ’

"

1, ..., p-1,

3



Y

k+1 k
* * = -—
(12. 14) jfl bj < jfl aj tak, (1), k =p, ..., n— 1.

If we specialize I to correspond to the bp largest a then

al:-o-l () = min (bp’ a;+1),

and conditions (12. 13), (12. 14) always hold under the assumption of

feasibility for the original problem. For if k < p and min (bp, a1:+1) = bp,

(12. 13) becomes

k k
Lb, < L aj
j:l J J:l

. : * = *
if k < p and min (bp, ak+1) a (12. 13) becomes

k k+1
Ib +b < L ap
j=1 3 P T =1

which is valid since l:)1 > b2 > 02 bn' If, on the other hand,
: *
k > p and min (bp, ak+1) - bp, (12. 14) reduces_'to
k+1 k

L b, < L a*
=1 1 7 e

i*p

again a valid inequality since the bj are monotone decreasing; if k > p

* = a%*
and min (bp, ak+1) ENRY (12. 14) becomes



k+1 k+1
L b < L a*
j=1 7 jer J

Thus the following rule either constructs a solution or shows that

the problem is infeasible.

(0, 1)-matrix rule. Select any column, assign its 1's to the rows

having largest row sum bounds, and repeat the procedure in the reduced

Eroblem.

In terms of the table seating problem, all n families can be
seated in n stages by selecting, at the j—th stage, any family not already
seated and distributing its members among those tables having the most

vacant seats.

Example

TR SR R S Y

5 4 4 4 3 1 1

14



(conjugate sequence)

6 6 3 3 2 2 0

N NN RO

5 4 4 4 3 1 1

The feasibility conditions of Theorem 12. 1 hold, since

L

5 6,

IA

9

A

12,

13

A

15,

17

IA

18,

20

IA

20,

21

A

22,

22 22.

IA

Using the rule, the following solution is found:

1{11 1*1_}1 6
1] ]ilal Ta]s
111 1131_1 4
1 1] 11 2
1 1 |2

.1.4___ J— 2

ey
J



We point out, in view of Corollary 2. 3, that if there are two
(0, 1)-matrices such that one satisfies upper bounds on row sums, lower
bounds on column sums, while the other satisfies lower bounds on row
sums, upper bounds on column sums, then there is a (0, 1)-matrix
satisfying the designated lower and upper bounds on both row and column
sums, provided, of course, that the lower bounds on rows (columns) do
not exceed the upper bounds on rows (columns).

Assuming m = n, the existence problem for (0, 1)-matrices can
also be interpreted as one concerning the existence of directed graphs on
n nodes having specified local degrees, where we now permit circular
arcs, that is, arcs that lead from a node to itself. Here an entry 1 in
the ij position means there is an arc from i to j. If we do not allow
circular arcs, the problem becomes one of filling an n by n matrix with
0's and 1's, subject to stated upper bounds a, on row sums, lower bounds
b 3 on column sums, and the added restriction that 1's cannot be placed
along the main diagonal. In other words, we require that the trace of
the matrix be zero [ ]l.

Following the same procedure used in the proof of Theorem 12. 1,
it is not difficult to see that feasibility conditions for this latter problem
can be stated as

l1] -1

(12. 15) Eb. < I a*+a*_, M alll ¢ {1, ..., n},
it S i [1] %

¥7
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where a‘l’ll (1) is the number of a, such that a, > |1l and i ¢ I. These
inequalities simplify considerably if we make the assumption that there

is a common rearrangement of the a's and b's such that
(12. 16) a, >a, > ... >a,

(12.17) b, > b, > ..

v
o

" Under these circumstances,

?bi —af;

is maximized, for |I| = k, by selecting1 = {1, ..., k}. Thus (12.15)
may be replaced by the n inequalities

k-1

b. < za;+a*({k+ ,...,n}), k=1 ..., n

(12. 18) ; - .

=R v R

Particular cases under which the common renumbering (12. 16), (12.17)
exists are those corresponding to Corollaries 12. 2 and 12. 3, that is,

bi = b all i, or a, = a alli.

If, instead of using the conjugate sequence (a;), we push the

dots representing the integers a, as far as possible to the left, but this

i

time place no dots in the main diagonal, e.g.



X . al = 4

xﬁﬁ_ﬁ___- azt3
RS lL.-_d 24

o] x! jes =2

- _]___ _ ”,1224 8g = 1

and define a;* to be the number of dots in the i—th column, then

k-1 k
* * = * %
(12. 19) fai+a.k({k+1,...,n}) 1?1 a’” .

Thus (12. 18) simply asserts that the partial sums of the b—sequence are
dominated by those of the a**~sequence, and we have conditions analogous
to those found by Ryser and Gale for the (0, 1)}-matrix problem.

We shall refer to the sequence (a;*) as the diagonally restricted

conjugate sequence in the following theorem, which summarizes this

discussion.

Theorem 12.4. leta, > a, > ... > a, b

Leta, 2 8, 2 2e,b; 20

2Z,..>b

be nonnegative integers. @ere is a (0, 1)-matrix (a, j) satisfying

12. .
(12. 20) }: aij < a, E aij > bj’ 8 8, 0,
j i i
if and only if
k k
(12.21) L b < L a** k =1, ..., n.
i- i?
i=1 i=1

&9



Here the sequence (ai ) is the diagonally restricted conjugate of the

sequence (ai).

The diagonally restricted conjugate sequence is not necessarily
monotone, but it is enough so to make the analogue of Corollary 12. 2

valid.

Corollary 12.5. If bi =balli =1, ..., n, then thereis a

n
(0, 1»-matrix satisfying (12. 20) if and only if nb < I a;*.
i=1

Corollary 12.6. If a, =a alli =1, ..., n, then thereis a

n
(0, 1)-matrix satisfying (12.20) if and only if L bi < na, bi < n-1
i=1

Proof of Corollary 12.5. First note that

* %
ar® =Ll + 13|
where
I = {ili < kx and a, > k-1},
Jk = {ili > k zmdai > k}.

We shall show that the monotonicity of the sequence (ai) implies
that either the sequence (a;*) is monotone, or else it has at most one

point of increase, and that increase is one; that is, either

g0



or, for some k = 1, , n—1,
*% %* % * % * % %* % *
Bl 2 2Ry B Tl 282 28

To see this, observe that

llkl 2 lIk+1I -1

lo I > tg .1,
and hence a.‘:* > aﬁil — 1, equality holding if and only if equality holds
in both the last displayed inequalities. Since a 1 > a, > .2 a, it

follows that a]:* = 8;11 — lif and only if a

if there were two points of increase in the sequence (a

X > kand 8 41 < k. Thus,

*

i*), say k and £

with k < £, then we should have

alzl>k>&k+1’

contradicting a1 > a This completes the proof of the assertion

%
made at the beginning of this paragraph.
To finish proving the corollary, we need to show that the

inequalities



n
follow fromnb < L a;* and the "almost monotone' property of the
1

;*). This can be established by induction on n, as follows.

sequence (a
For n = 1, there is nothing to prove. Assume the proposition for n — 1,
and consider the case forn. If b < a;*, then the almost monotone

property, together with the fact that we are dealing with integers, imply

k
thatb < a;* for all i. Consequently kb < L ai**. If, on the other hand,
1

n—1
b > a**, thenwe have (n—1)b < I aX** and the induction hypothesis

1 i
applies.
n
Proof of Corollary 12. 6. To show that a, =a, L bi < na,
k k i=l
. * %
bi < n-—1limply X bi <z a’" where b, > b2 > 02> bn’

i=1 1
consider two cases. If k < a, then ai** =n-—1fori < k, and hence

k k
Ebif_k(n—l)=Ea;*.
1 1
If, on the other hand, k > a, then
n-—1 fori < a,
a;*= a fori = a+1,.
0 fori > a +1,
and hence )
k n k
Lb <Lb <na=Ca™
1 1



We turn now from existence problems for (0, 1l}-matrices having
stated row and column sums to a brief discussion of other results con—
cerning such matrices. Throughout this discussion we let Ot denote the
class of (0, 1)-matrices A having row sums a5, column sums bj’ with
3129‘22"' Zam> O,bIZb2

suppose that Or is nonempty. Such a class is called normalized [ ].

> ... > bn > 0. We further

The assumption of monotone row and column sums sometimes entails no
loss of generality (e. g. the class existence problem), but at other times
is a restriction (e. g. the zero trace problem).

min(m, n)
For given A in X, the trace 0 of A may be defined by 0 = z a.-
i=1
Ryser has derived simple formulas for the minimal trace ¢ and the
maximal trace 0 of all matrices in Or [ ] . These formulas are in

terms of the structure matrix for the class:

(12. 22) 0 = max [min(k, £)-t ],
9]
K, ! .
(12. 23) 0 = min [max(k, 2) +t.], k=01, ..., m£=0, 1 ..., n)
k, £ ! :

Formulas (12. 22) and (12. 23) can also be obtained using network flows,
but a flow approach would require some of the theory to be developed in
Chapter III. The formula (12. 22) for ¢ includes Theorem 12.4 as a
special case. It is an interesting exercise to demonstrate this directly.
Another problem for the class X that has been solved by Ryser

is that of determining the maximal term rank Z for all matrices in Of [ ].



Here the term rank p of a (0, 1)}-matrix is the maximal number of

independent 1's in the matrix, or, equivalently, the minimal number of

lines that cover all 1's. Ryser's remarkable formula for maximal term

rank -5 is again in terms of the structure matrix:

(12. 24) p =minlk +1 +t ], (k=0,1 ..., m£=0,1, ..., n)
k,?

No similar formula for minimal term rank p is known as of this writing,

but Haber has given an effective algorithm for constructing a matrix of

term rank 7| ] . Neither term rank problem appears amenable to

a flow approach.

Recently Ryser and Fulkerson have introduced the notion of the
"width" ¢ of a (0, 1)}-matrix, and have derived a formula for the minimal
width € of matrices in O ] . Here the width of a (0, 1)-matrix A
is the fewest number of columns of A having the property that every row
of the resulting submatrix contains a 1. That is, viewing A as the
incidence matrix of sets vs. elements, the width of A is the fewest
number of elements that represent all sets. The formula for © has a
somewhat different character than (12. 22), (12.23), and (12. 24), but

may again be regarded as involving the structure matrix. If we define
(12. 25) N(e,k,1)=tkl +(sl+... +s€)—-ke

where



(12. 268) 0 <e¢e <n 0<k<m ¢« <1t <n,

then the minimal width € for A in (T is equal to the first nonnegative

integer ¢ such that

(12.27) N(e,k, £) > m—k

for all integers k and { satisfying (12.26). While N(¢, k, £) may be defined

in terms of the structure matrix by (12. 25), it can also be checked that

if A in O is partitioned thus:

with A1 of size m —k by ¢ and A

equal to the number of 1's in A

2ofsizekby1 —¢, then N(¢, k, £)is

plus the number of 0's in A _ plus the

1 2

number of 1's in A3.

The corresponding problem of determining the maximal width
€ for all A in & appears very difficult. *

The formula (12. 27) for € can be derived ;xsing network flows. We
sketch this approach. It may first be shown that there is a matrix A

in Or of width € such that the submatrix composed of the first € columns

of A has at least one 1 in each row. This follows from the monotonicity

*
Especially since a solution to this problem would settle the
existence question for finite projective planes. See [ ].



of the column sums of A and an interchange argument. Here an interchange

is a transformation of the elements of A that changes a minor of type

1 0
0 1
into a minor of type
0 1
1 0},

or vice versa, and leaves all other elements of A fixed. *
It follows from this observation that © is the first ¢ such that

the constraints

(12. 28) La_,=a,XL a, =b,
& SO § j
i i
€

(12. 29) L a, > 1,
=1 47

(12. 30) aij =0or 1,

are feasible. Now, using the device of I. 11 for bounding partial sums of
arc flows emanating from a node, a flow feasibility problem can be set

up for the constraints (12.28), (12.28), (12.30). The result is a network

*
The Ryser interchange theorem asserts that if A and A' are in
O , then A is transformable into A' by a finite sequence of interchanges

[

g6
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of the kind shown in Fig. 12. 1 (form = 3, n = 4, ¢ = 2):

Here the supplies are a, 8, a4 the demands bl’ bz, b3, b4, and the
arc capacities are unity except for those marked otherwise. Application
of the supply—demand theorem to a network having this structure leads,
after simplification, to the conditions (12. 27) as necessary and sufficient
for the existence of the required flow.

It can also be shown that if the (0, 1)-matrix rule of this section

is applied by first assigning the 1's in the last column, then the next—

to—last, and so on, the resulting matrix has minimal width ¢ [ ].
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Chapter III
MINIMAL COST FLOW PROBLEMS

Introduction. 1In this chapter we take up the problem of

constructing network flows that minimize cost. The practical
importance of this problem area is affirmed by the fact that a
sizeable fraction of the linear programming literature has been
devoted to it, and an even larger share of the many concrete
industrial and military applications of linear programming have
been in this domain. Indeed, a survey made in 1956 [ ]
indicated that about half of such applications at that time
fell in the category of transportation problems, or, in our
parlance, minimal cost flow problems. Among the reasons for
what might seem to be a surprising concentration, particularly
in applications, on problems of this kind, are perhaps these:
answers to large transportation problems, involving many hundreds
of constraints and thousands of variables, can be easily computed,
whereas it is an impossible task, at present, to solve a general
linear programming problem of these dimensions; & number of
linear programs that might not appear to be transportation
problems, turn out to be such on closer examination. Well-known
examples of this are the warehousing and caterer problems, dis-
cussed in this chapter.

The standard transportation problem is that sometimes
referred to as the Hitchcock problem, after one of its formulators
[ 1. Hitchcook also gave a procedure, much akin to the general

simplex method, for obtaining a solution. Independently, during



World War II, Koopmans arrived at the same problem in connection
with his work as a member of the Joint Shipping Board; he and
Reiter [ ] discussed the problem from the standpoint of
economic efficiency analysis and pointed out the analogy be-
tween it and the classical Maxwell-Kirchoff electrical network
problem. Still a third independent formulation and solution
process have been given by Kantorovich [ ].

In a paper published in 1951 Dentzig showed how his simplex
method for general linear programs specializes to yleld an
efficient computation for the standard transportation problem
[ ]. At the same time he observed the important integrity
property of solutions té such problems. Since then, various
other accounts of the simplex computation for transportation
problems have appeared, and other kinds of algorithms have
been proposed.

The algorithm described in section 1 for obtaining solutiens
to the Hitchcock problem is a generalization of a combinatorial
procedure developed by Kuhn [ ] for the optimal assignment
problem (section 2), a special case of the Hitchcock problem.
One of the basic ideas underlying Kuhn's method stems from
Egervary's proof | ] of the Konig-Egervary theorem concerning
bipartite graphs; another may be regarded as implicit in the
proof of this theorem that appears in [ ]. In this method,
which Kuhn has dubbed the "Hungarian Method," two routines

are involved, one for finding a maximal set of independent



admissible cells and a minimal covering of admissible cells in
an n by n matrix, the other for transforming to a new set of
admissible cells in case the o0ld maximal set contained fewer
than n members. In our generalization to transportation
problems, the analogue of the former of these becomes a maximal
flow problem, of the latter a transformation of dual variables.
Thus we view the process as one of solving a sequence of maximal
flow problems.

Munkres has given a similar algorithm for the Hitchcock
problem, along with bounds on the computation [ ].

We have chosen to discuss the Hitchcock problem, for which
the underlying network is bipartite, before presenting a general
algorithm for solving minimal cost flow problems in arbitrary
networks with capaecity constraints on arcs (section 3). An
equivalence between these two problems is then presented in
section 4. In section 5 an algorithm is described for finding
& shortest chain from one node to another in an arbitrary net-—
work in which each arc has an associated length. This problem
is a special case of the minimal eost flow problem. In section
6 we return to the latter, allowing arc costs to be negative,
but subject to a nonnegative directed cycle condition. The
shortest chain algorithm of section 5 can be used to initiate
the computation in this case. The following two sections
(7 and 8) contain brief discussions of the warehousing and

caterer problems.



Section 9 applies the theory developed for minimal cost
flows to the problem of constructing a maximal dynamic flow
for a given number of time periods in a network in which each
arc has not only a flow capacity, but a transit time as well
[ ]. The assumption that capacities and transit times are
independent of time leads to a remarkably simple and effective
method of solving the maximal dynamic flow problem for all time
periods. Without this assumption, the problem can be treated
as a static problem in a time expanded replica of the given
network.

Another application of minimal cost flows is discussed
in section 10. The problem here is that of determining the
least cost for a project composed of many individual Jobs that
are partially ordered due to technological restrictions. It is
assumed that the cost of doing any Job varies linearly between
given extreme completion times for the Jjob, and a schedule is
sought that minimizes project cost, assuming that the project
must be completed by a given date [ 1.

Section 11 concludes with a description of a method for
constructing minimal cost feasible circul@tions in a network
having lower bounds and capacities on arcs [ ]. The algorithm
of section 1l may be viewed as a generalization of the ones
presented earlier in the chapter. We believe that it 1s both
the most efficient and flexible minimal cost flow method 1in

use at the present time.



l. The Hitchcock problem. A paraphrase, in the language

we have been using, of Hitchcock's statement of the problem
might run as follows. Suppose there are m Bsources Xys coes Xy
for a commodity, with a(xi) units of supply at x,, and n
sinks y;, ..., ¥, for the commodity, with a demand b(ya) at

vy If a(x,, yJ) 1s the unit cost of shipment from x, to

yJ, £ind a flow that satisfies demands from supplies and
minimizes flow cost.

Since the network for this problem is bipartite, it is
convenient to drop the x's and y's and use matrix notation
and terminology. Thus, letting a, 2 0 denote the supply at
the 1% source, by > 0 the demand at the 3™ sink, a,, 2 0 the
unit shipping cost from source i ¢to sink J, the problem is
to find an m by n nonnegative matrix ’15 that satisfies the

roWw sum constraints

n
(101) l J§1f13 S ai, (1 = 1) s e 0y m),
the column sum constraints

m ‘.
(1.2) 1£f13 2 b:, (J - 1’ oo ey n).
and minimizes
(1.3) Ta,, f,, .

17y 14

Since we are assuming ai.1 2 0, it suffices to suppose that
(1.2) are equalities. Indeed, the problem is usually stated with



both (1.1) and (1.2) as equalities, and the feasibility assumption
that total supply equals total demand, z:a = J’ However,
we shall merely assume that ; 2 .1' and leave the problem
in inequality form. It follows from the supply—demand theorem
that this is a necessary and sufficient condition for feasibility.
We shall also assume that the a,, bJ, and a1J are integers
(equivalently, we ecould suppose they are rationals).

Example. Suppose that unit shipping costs are given by
the array of Fig. 1.1 with supplies a, and demands bJ as
indicated in Fig. 1.2. Then a feasible solution with total
cost 93 is shown in Fig. 1.3.

3 3 6 2 1 2

5131 713!181|5 4

;5 612(5| 7R 5 3 111

'2l8|s|u|8l2]| 3 3

9!6j10| 510 |9 S 11311
Pig. 1.1 Pg. 1.2 | Pig. 1.3

To write down the linear programming dual (see I.12) of
the Hitchcock problem, we may first rewrite (1.1) as

The customary assumption that (1.1) and (1.2) are qualities
entails no loss of generﬁlity, siﬂce one can add an n+1

column with column sum 1§£ g4 - ZA bJ, and take a = 0,

b )n+1
theredby obtaining an equivalent Hitchcock problem in equality
form. In order for this simple equivalence to work, it is
essential that costs be nonnegative.
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to get the problem in the form (I.12.4) — (I.12.6). Thus,

assigning dual "row variables” to the constraints (1.1),

a
1
dual "column variables” BJ to the constraints (1.2), the dual

linear program has constraints
(1.%) -a, + 51 (4 3y 40
(1.5) Gy 53 2,01

subject to which the form
(1.6) --§ai a, + § b‘1 BJ

18 to be maximized. (If we had taken (1.2) as equalities, the
BJ would not be restricted in sign).

Example (continued). A feasible dual solution is shown in
Fig. 1.4, where the circled entries indicate equality in the dual
constraints (1.%).

¥
The dual variables a, BJ play a role analogous to potentials

in electrical network theory, and are sometimes referred to by

this name. They are also frequently given the economic interpreta-—
tion of prices; this ie perhaps more appropriate here, since the
primal problem has been verbally deseribed in terms of supplies,
demands, and shipping costs. However, we eschew either of these
interpretations and simply call them "dual variables,"” or, later
on, "node numbers."
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Since the form (1.6) has value =33 + 126 = 93 for this feasible
dual solution, and since (1.6) is bounded above by (1.3) for any
pair of feasible solutions to dual and primal, 1t follows that
the feasible solutions shown in Pig. 1.3 and Fig. 1.4 are optimal
in their respective problems. Notice that

(a) - o, + BJ 4 8, implies ru = 0,
(v) CH > 0 implies %: 1‘1J = 8,,

(c) BJ > 0 4implies ; t':‘.J - bj’

Indeed, we know these implications must hold because the f1J
and Gy BJ constitute a pair of optimal solutions to primal
and dual.

The general scheme of the algorithm to be described for
solving Hitchcock problems is this: start with a particular
feasible d&ual solution a,., BJ’ and attempt to satisfy the
primal constraints, allowing positive fiJ only ir



-a, + BJ = aiJ; more precisely, solve the problem

(1'7) §r1" Saii
(1.8) )1: £, < by
(1.9) £y 20
(1.10) f44=0 if —a, + By ¢ 8y 4
(1.11) maximize £,, »
1?3 14

This is a maximal flow problem and can consequently be solved
by the labeling process. We are then either done, or can use
the results of the labeling to transform the old feasible dual
solution to an improved one, i.e. one that gives a higher value
to the dual form (1.6), and a new maximal flow problem emerges.
Eventually the computation terminates with optimal solutions to
both primal and dual.” |
It will also be true, although we hav& not mentioned it

explicitly in this sketch of the computation, that, at any stage,

f1J will equal a, only if the current dual varilable ay
is positive. Termination of the process occurs when the demands

b, are met exactly, and thus at termination, the remaining

J
optimality property (c) above will hold.

B3
A generalization of this primal-dual method to arbitrary
linear programs can be found in [ ].
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We proceed to give a detailed statement of the algorithm
[ ]. To start out,” take

(1.12) a, =0, aJ - min 8449 fi‘1 = 0.

(Thus the initial a,, aJ satisfy the dual econstraints (1.3),

(1.5)) The computation now progresses by a sequence of labelings

(A below); if a labeling results in breakthrough, the flow f

1s changed appropriately (B below); if nonbreakthrough occurs,

the current dual variables a,, BJ are transformed (C below).
Cells 13 for which - ay + BJ = aiJ will be called

admissible, others inadmissible, in describing the computation.

The labeling rules are little different from those of II.5.
Again we alternate between row and column scanning; this time,
however, the flow change will not always be unity, and hence we
shall carry along enough information in the labels so that 1f
breakthrough occurs, the resulting flow change can be effected
without first backtracking along the flow augmenting path.
(Actually, for hand computation, it is just as convenient to
backtrack. )
Routine A (labeling process). Begin by assigning labels

(—, 61), where &, =a, — rij, to all rows 1 for which

riJ < a,. Next select a labeled row, say row 1, and scan
it for all (unlabeled) columns J such that cell 1J 1s
admissible; label these columns (1, gj), where 8, =¢.

;e could start with all a, = 0, all BJ = 0. However,
the starting dual solution (1.12) is a better one.



Repeat until the labeled rows have all been scanned. Then
select & labeled column, say column j, and scan it for all
unlabeled rows 1 such that ’1; > 0; label such 1 with (J,€i)
where ¢, = min (’13' 53). Repeat until previously labeled
columns have all been scanned. Then revert to row scanning of
newly labeled rows, and so on. If a column is labeled for which
;r“ < by (breakthrough), stop the labeling process and
apply Routine B. Otherwise continue until no more labdbels can
be assigned (nonbreakthrough) and go to Routine C.

Routine B (flow change). Here we have labeled column
with (4, 53) and ; riJ ¢ bg' Alternately add and subtract
€ = min (GJ, bJ - ; tiJ) along the path indicated by the labels.
That i1s, add ¢ ¢to fij’ then proceed, in row 1, to the cell
singled out by the first member of the label on row i, and
subtract ¢, then proceed, in the column reached, to the position
picked out by the first member of its label, add ¢, and s0 on,
stopping when one of the initially labeled rows has been reached.
If now all column demands have been satisfied, the algorithm
terminates. Otherwise, start with the new flow generated,
discard the old labels, and go back to Routine A.

Routine C (dual variable change). The labeling process
has resulted in nonbreakthrough. Let I and J be the index
sets of labeled rows and columns, respectively, and define new

dual variables by

11



a,, 1e¢elI,
' b |

(1.13) a, =

a, + 8, 1¢X,

ﬁ:: JGJ,
(1.1%) 63 -

BJ+6, Jeld,
where
(1.15) ' 5 - mip (aiJ + @, -sJ) .

The labeling process is then repeated with new admissible cells
defined by ai, 53

Before showing that this algorithm solves the Hitchcook
problem in a finite number of steps, we make some preliminary
observations dealing with the nonbreakthrough case. Pirst of
all, the dual variable change & of Routine C is a positive
integer, since all cells 1j 4in the (nonempty) rectangle IT
are inadmissible relative to a, and BJ’ for otherwise, some
column of J would have been labeled from some row of I. (That
the rectangle IV 1s nonempty follows from the assumption that
termination has not yet occurred, for if either I or J were
empty, the minimal covering value a(I) + b(J) for all
admissible cells would be at least le 42 Which is absurd since
a(I) + v(J) = E tij’ the flow value.) Thus we gain new
admissible cells in IY corresponding to positions for which



the minimum in (1.15) is attained. On the other hand, any
admissible cell in YJ becomes inadmissible for the next
labeling. FPor such a cell, however, we must have had ria = 0,
as otherwise & row of Y would have been labeled from a column
of J, and thus the old flow can be used to start the next
labeling. Indeed, even the old labeling can be retained to
initiate the new one, because (a) the pattern of admissibility
in IJ and Y J has not been altered, and (b) the admissible
cells lost in IJ could not have contributed to the old labeling,
since J received labels from I.

That the algorithm terminates in a finite number of steps
can be seen as follows. PFirst of all, since each occurrence
of breakthrough increases the flow value 2: 1'1.1 by at least
one unit, the number of labelings that produce breakthrough is

bounded above by the total demand b On the other hand,

one can show easlly that each nonbreak:hrough increases the dual
form (1.6) by at least one unit; since this form is bounded
above (e.g. by {: aiJ 13 for any feasible f), this will
establish riniteness. To see that the dual form increases,

note from (1.13) and (1.1%) that
_§ aia; + §b353 - - §a101 + §bJBJ + 8(b(¥) - a(Y)).

As we have observed, & 1is a positive integer. Thus 1t suffices
to show that b(J) — a(TI) > 0. Again this strict inequality
follows from the fact that if nonbreakthrough has occurred, then

13
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n
I = .
a(T) + »(J) 1?.1 Ty < ng b,

Another way to demonstrate finiteness rests on the fact
that the mumber of consecutive occurrences of nonbreakthrough
can never exceed min (m, n) + 1. For, as was pointed out,
after nonbreakthrough, the old labeling can be repeated; in
addition, at least one more row and column can be labeled. To
see this, recall that after changing the dual variables, at
least one mew admissible eell is obtained in the rectangle IJ.
Thus some column of J will receive a label. If the new
labeling is to result again in nondbreakthrough, then this column
demand has been fulfilled, that is ;rﬁ = bj- for the column
T €T 1in question. Since f43=0 for 1 eI, then £47 >0
for some 1 € I, and consequently another row can be labeled.
(We are tacitly assuming that columns with zero demand, if any,
have been deleted from the problem to start with.)

This second finiteness proof leads to a bound on the total
number of labelings required to solve a Hitchcock problem that
depends only on the total demand and the size of the problem,
the bound deing

(1.16) ﬁ;l by + (él b, =1) (min (m,n) + 1),

Here the first term bounds the number of labelings resulting in
breakthrough, the second the number of labelings resulting in
nonbreakthrough. While this bound, which 1s due in essence to



Munkres [ ], doesn't come close to being achieved in practice,
it i1s still sufficiently good to be interesting. It also perhaps
lends some theoretical support to the empirical observation that
"long, narrow" Hitshcock problems are faster solved than "com—
parable square” ones, the comparison being on m + n, the number
of constraints.

Having established finiteness, our next job is to show that
upon termination of the computation, a pair of optimal solutlons
to primasl and dual has been constructed. This is almost obvious,
but we give the details nonetheless. First note that 1t 1s clear
from (1.13) — (1.15) that feasible dual solutions are maintained
throughout the computation, provided we start with one. It is
also clear that, upon termination, a feasible primal solution
has been constructed. Moreover, at each stage we allow the
possibility riJ > 0 only if the current dual variables satisfy
e.i.1 + @y —'BJ = 0, and thus upon termination we have this opti-
mality property. Also, at termination we have ; riJ = bJ
for all J; consequently the optimality criterion that 53 >0
should imply ;ri g = b.1 is satisfied automatically. The
third and last optimality condition that needs to be checked is
that, at termination, a, > 0 only if ’13 = a,. This
certainly holds for the starting a . It also holds for all
subsequent @y because a, increases from zero only if
1 ¢7T at some stage, which means that at this stage .§ riJ = a,,
and hence this equality is maintained for later stages.

15
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We summarize some of this discussion in the following
theorem.

Theorem 1.1. Let &, > 0 (1 =1, ...y m), b, >0(§=1, ..., n),
and a5 2 O be given integers. The algorithm composed of

routines A, B, C produces (1ntg;gal) solutions to the corresponding

Hitchcock problem and its dual after at most
)3 bJ + ( };-bj — 1) (min (m, n) + 1) applications of routine A.
J

In computing a Hitehcock problem by hand, it is convenient
to carry along two arrays, one of which might be termed the
"sost—dual variable array,"” the other the "flow array.” In the
£irst of these the dual variables are recorded above and to the
left, say, of the cost array; using the resulting array, it is
easy to locate cells for which a’..1 + ay -'33 = 0. These can
be marked by circles in the flow array. The labeling process
48 then carried out on the flow array, labels being recorded to
the right and below the array, say. If breakthrough results,
the indicated changes are made in the flow array and the old
labels erased. If nonbreakthrough results, the dual variables
are changed in the cost—~dual variable array, new admissidle
cells are marked by circles in the flow array, and the circles
in old admissible cells that are no longer admissible are
erased. One can then re—label, using the o0ld flow and old
labeling to initiate the new labeling.

It is also convenient to carry along an extra row and

column in the flow array for the purpose of recording the
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remaining supplies a, — riJ and demands bJ'—'J; fij’
changing these with each flow change. Those b.1 - ;r“ that
are positive indicate potential breakthrough columns; the posi-
tive a, — ;r” single out rows that start the labeling
process.

Example (continued). The figures and interspersed comment
below describe the step-by-step solution of the example. In
carrying out the labeling process, we have not recorded the
second members of the labels, but have found the flow change by
backtracking in the event of breakthrough.

Cost-dual variable array Flow array
2 3 3 3 7 2 1 2 3 4 5 6 o8y =)f,
| oRe o] 4
0 5|3|[713]8|2 1B
1 l
ol 5|612!5]| 7111 2 _.l_-i@- _4_; -
st e o
olgl6ho|5p0]9 Wil | 9! =
- ! 2
b, );r“—go 06,1/ 0 !

2 «—Labels

The initial flow was filled in by sweeping the first row
for its first circle, here cell 12, setting f12 - min(al, b2) =3,
reducing the supply and demand for row 1 and column 2 by 3, then
going on to the next circle, and o0 on. (Of course we eould

have repeated the labeling process a number of times instead.)



We then label and do not break through to one of the "shorted"
columns 3, %, 6. Thus I ={2, 4}, Y -{1, 2, 3, &, 6} and we
turn to the cost—dual variable array to compute

8 = ?%D (513 + a, -BJ) = 2, the uinimnm being achieved in cells
24 and 4%. We then change the dual variables using (1.13),
(1.1%), add circles in cells 2%, 44, and remove circles in 1J

(here there are none), to obtain the new arrays shown below.

1€
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4 5 5 5 7 4 1 2 3 4 5 6

2 15/3|7/3|8]5 1 | B3 (2 0

0 |[5{6)12:5| 71 2 @@ by -

2 |2/8|3 /4|82 3[3)‘*@_‘ o

o |9!/6f10]510]9 4 O -
0|o|6[1-| 0] 2

The labeling has resulted in breakthrough to column 4, the
resulting flow change of £ = 1 being indicated by + and -

in the flow array.

1 2 3 4 5 6

> (O |
Qe
> O

T
i
-+
b
O |

o
=

(‘e |° |V

O

0olol6/0l 0 2

4
1 2 2

EA N I

N

Nonbreakthrough, 6 = 1, new circle in cell 21, no circles

lost.
5 5 6 5 7 5 1 2 3 4% 5 6
2 |5]3|7]|3|8|5 1 1 lo |4
o ls5|6125 711 2 @ D) -
3 |2/8/3/418|2 3 = (5 (Olo |1
A A~
0 |9]610,510/ 9 4 | ) | 9 |-




2C

Breakthrough to column 3, &= 3,

1 2 3 4 5 6
1 G I 0|4
2 | @@ _lof*
31O 1@ | Oo
4 —qb 9|~
0/0|3]0]0| 2
2 1 y 2

Nonbreakthrough, & = 2, new circle 16, lose circle 31.

5 5 8 5 7 7 1 2 3 4 5 6
2{5|3|713| 8|5 1 @! @j (+)] 0 |
0|5|612|5] 711 2 (3 () |o (¥
5(2|8|3 4| 8|2 3 ® Oio
o/9|6P0(5/10]9 4 @ 9= =

0/o0|3|0|0-
1 Yy 2 1
Breakthrough to column 6, € = 1,
1 2 3 5

00O |O)] O

N VR S T =




5 = 1, new circles 22, 42, lose circle 1k,

Nonbreakthrough,

1 2 3 4 5 6

5 6 9 5 7 8

0|03 0] 0/l

®
— 1 - - - - -
@m_w ®
- NN
Nl vl o
-~y
|~ O O
~
N = n
~la| | o
v} et
Mm|wo| oo
nlinl af o
M O OV O

Breakthrough to column 6, €= 1,

1l 2 3 4 5 6

010{3(0}01{0

Nonbreakthfough, 6= 1, new circles 13, 43, lose circle 36.

1 2 3 4 5 6

5 610 5 7 8

Nl 6| OV
~
O |t~[0}| O
~
M | N
N || O
~ ~
N\ |0 {00 |0
ninl | o
MmN O ~ O



Breakthrough to column 3, €= 3, and problem done.

1 2 3 4 5 6

= W o e
+£|lo| o

The last cost-—dual variable array gives an optimal dual
solution, the last flow array an optimal primal solution. These
are the same as shown previously in Fig. 1.3 and Pig. 1.%.

If desired, alternate minimigzing fleows, if such exist, can
be found by using the optimal dual solution. The additional
conatraints that must be obaserved are Just the optimality
properties previously stated. For instanece, we can permit
213 or r22 to be positive, since they correspond to admissible
cells in the last flow array, so long as we insist that ria « 0
for inadmissible cells and ? flJ - a, ? :)J - ay, (since
o >0, ay > 0). Also, of eourse, we must maintain the con-
ditions E rid - bJ (since 211 5: > 0). Thus, for example, to
look for a minimizing flow in which f13 > 0, we could impose
a lower bound of unity on 113 and solve the resulting flow
problem on the "network" of admissible cells.

In a similar way, the optimal dual variables can be used
to discover how mush the shipping bill would increase if a positive
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flow were allowed in an inadmissible cell. For instance, in-—
creasing r23 from O to k would increase the shipping bill
by k(823 +a, -83) = 2k, 80 long as flows corresponding to
other inadmissible cells were held at zero and the other optl-
mality conditions preserved. Consequently the "most expensive"
route to use is 32, for which a32 + 03 —-B2 =« Q9 is maximal,
Other information is contained in an optimal dual solution.
For example, since 03 = 7, 1t follows that increasing the
supply at source 3 by one unit is potentially worth 7 units on
the transportation bill (here it really is worth 7 units), and
80 on. ILinear programming facts of this kind are well-known and
we 8hall not dwell on them, except to say that for the Hitchcock
problem such statements follow readily from the identity

] ] ] | ]
i?‘jaij(fij_fi.j) - jLZ",J(a“+ai--aJ)fi‘1 -%:ai(ai-ai) + %:BJ(bJ-bJ). |

Here £ 48 an optimal primal solution, a, p an optimal dual
solution, and r' a flow from sources to sinks having row sums
a; and column sums b;.
Another rule for changing the dual variables that can be
used instead of the one given by (1.13) — (1.15) has been
stated by Plood [ ]. This transformation has the advantage
of making larger changes in the dual form at the expense of
destroying o0ld admissible cells containing positive flow entries.
To deduce this rule, let us begin by supposing that, in—
stead of adding as large a constant as possible to all ey 1 ¢,



and 53' J € J, maintaining dual feasibility, we look, more
generally, for a dual variable change of the following kind:

ai’ 1 € IJ

(1.17) G, =
a, + 8, 1¢3,
. 53: Jd eJ,

(1.18) BJ -

53"'550357:

where B, 5J 2 0 and a + c;_ - 53 2 0, the latter for all

iJ
i, J. PFor this transformation, the change in dual form is

given by

(1.19) )y b6, — 8 zay,
J I

and thus we take as our objective that of maximizing (1.19)

subject to the constraints

(1.20) 844 + 8y — By =By 20, 13 ¢ 17,
(1.21) 315"’“1“53‘*'5‘5520' 1Jf.IT,
(1.22) 80, 8, 2 O.

The reason for restricting attention to the transformation
(1.17), (1.18), instead of allowing variable quantities to be
added to the a,, 1 €T, as well, is that for the former, the
resulting maximum problem can be solved by a simple rule, as we
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shall see. Without the restriction, we have, in effect, a
problem on a par with the original Hitchcock problem.
To simplify the notation, set

(1.23) Eij =8y, +0, -53.

Notice that on the first step, that is, for the Gy, ﬁJ defined
by (1.12), 1t 1s true that every column of the rectangle I J
contains at least one Elj = 0, because for any J, Eﬁj = 0 for
at least one 1, and the rectangle I J contains no zero EEJ.
We may assume that we have this property in the maximum problem
(1.19) - (1.22), since we can guarantee it, if necessary, by
increasing the BJ until every column contains at least one

aij = 0.

For fixed &, the change (1.19) 1s maximized by taking each
63 as large as possible, that is

65 = min [min 840 mép (aij +8)], Je?.
In view of the remark of the preceding paragraph, this becomes

Then our problem is to determine a & that achieves

(1.2%) max b, min (6, A,) -8 ) a,,
5 3 BTN
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where

(1025) A -=m1n§ » J €I .
J 1 U
let us assume the notation has been chosen so that
T = {1, cees @)y and 0 <Ay { Ay € oo A . We first remark
that the maximum in (1.24) is attained by selecting 8 to be
one of the XJ (§ =1, ..., q). 1Indeed, any 5 such that
A <8 Mg (k=2, o0, q-1) 1= majorized by selecting

either 8 = Ak or 6 = A 12 since, of the three numbers

k+

k r §:
}:bj)‘3+)‘k bJ-Zai ’
i=1 | J=k+1 T |

k .rg
J{jlbj Ay + 8 bJ-Eai ’

K
Zle LY R L }% b, —-Zai] ’
J=

=k+1 I

the first is no smaller than the second if the quantity in
parentheses is nonpositive, and the third 18 larger than the

second otherwise. Moreover, if 5' > A, the\comparison is

q
between the two numbers

ibJ Ay-8 Zay, %bj Ay -2 Loy
=1 T J=1 T

the second being larger. 1If b' 4 xl, the comparison is between

the numbers
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5 [%bd—gail VN [%bJ-—;ai] ,

J:l Jl:l

and again thé second is larger since the number 1n parentheses
is positive. Thus &6 1s one of 11’ cesy Aq, and the problem
is reduced to determining

k
v [fes (B g

J=1 J=k+1

fOI‘ k‘l, s0 0y QO NOW

q
O(k+1) = $(k) = (A5 = N) L v, -1 a1> ,
I=k+l b §

and thus - $(k+1) — ¢(kx) 4s nonnegative or nonpositive according
as the second factor on the right is. It follows that the
maximum problem is solved by selecting © = kk’ where k 1s

the first integer for which

k
ZbJZ %bj—fai.
3=1 §=1 T

Thus we have at our disposal the following alternative rule

for changing dual variables after nonbreakthrough.

Maximal dual change rule. let

(1.26) AJ = mén (aid + ay —-ﬁj), Jel,
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and arrange the kJ in increasing order. Beside each XJ

record the corresponding column demand bg‘ Accumulate these

latter until the sum first exceeds b(Y) — a(Y), and let B8

denote the corresponding A,. Then define

3
Lo7) ' LY 1 ¢,
(1.27 a, = :

a, +8, 1¢7T,
(1.28) B; = min (aij + a;) .

Notice that taking 6 = Al corresponds to the simpler
transformation (1.13) — (1.15). On the other hand, admissible
cells in the rectangle T J may become inadmissible for the
next labeling; since these may contain positive entries, the
flow value may be temporarily decreased, so that more applications
of Routine A would be required before nonbreakthrough again
occurs. It seems likely, however, particularly for machine

computation, that use of the maximal dual change rule in place



of the simpler one would be uorthwhile.'

Example (continued). After the initial step in solving
this example, the following arrays were obtained:

2 3 3 3172 1 2 3 4 5 6
of5i3|7[318]5 1 1) 0
o|ls5i6a2|5|7n1 2 (:) bl -
ol2l83|u|8]|2 3 10O, Qo‘j
0|9 |6 5p0|9 y | 9, -
oloj{6{1]0 2]

Suppose we apply the maximal dual change rule. Here b {l, 3} ’
T=1,23, 4 6}, 53 -a(I) =13-7 =6, and

¥

The basic algorithm, using the transformation (1.13) - (1.15),
has been coded for the IBM 704 cozguter by K. Speilberg; this code
is available through SHARE, No. 464. Computing times quoted for

the code (exclusive of input-output times) for several examples
were:

matrix time"
130 by 30 1, 304
160 vy 30 2:134
190 by 30 [] -n
220 by 30 4 s8 .

Comparisons were also made with the specialized form of the
simplex algorithm that is known as the stepping~stone gpethod.
For the same set of problems, the latter times were 2 13,
' 56, 7' 5, 11’ respectively.
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KIOB 12-3 )3-7 Xu-Z 16.7

by=3 by=3 by=6 b =2 bg=2.

Thus, since by + b, = 56 by +by +by = 8, we take

6 = 12 = 3, Then the new arrays are

5 6 6 57 5 1234 56
315137385 1 1® 1
0|5/ 6125 711 2@0 O@ 4
32|18, 3/4|8|2 3@0 (O o
0|9 (6105109 s 1O 10 9

olo|6j1lo]2

Observe that the flow value has been decreased, but many more
admissible cells are available. Three successive breakthroughs
are then followed by the nonbreakthrough situation

1 @ B 1 |-
2@0 @Q 0|4
30 1B | ©°
v O 1© 8 =~
ololt|o]o |1
2 1 4y 2

with. {3}, T - {3, 6}, b(¥) - a(T) = 5, and
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b, = 6 b6 =2 .

Thus 6 = kj = 4, and we obtain the new arrays

5 610 5 7 8 1 2 3 4 5 6
31503|7(3/8]5 1 0 OE
o|sl6h2; 5|70 e 0O O |o
7121/8|3|4|8]2 3 @ 1
‘o|9|6ho|s5ho|9 | OO® 8
olo|slolo]|2

At this point we have an optimal dual solution, and are there—
fore almost done. Several more labelings (at least three) are

required to construct an optimal primal solution.

2. The optimal assignment problem [ ]. A well-known

extremal combinatorial problem, that generalizes the problem
of assigning qualified personnel to jobs (II.5) and is also
similar in some respects to the bottleneck assignment problem
(II.6), 18 that of assigning n men to n Jobs in an optimal

fashion: it is assumed that man 1 4in jJob J has an efficlency
measured by the nonnegative integer aij' and a permutation or

assignment 1 — P(1) 1s sought that maximizes the efficiency

sum
n

JZ0,e(1)
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If one takes aid = 1 or O according as man i1 i3 or is not
qualified for job J, the problem of II.5 is obtained.

Since, by Theorem 1.1, a Hitchcock problem with integral
supplies and demands always has an integral solution, the

optimal assignment problem can be posed as the specilal Hitchcock

®

problem :

(2.1) ) r 1 ( 1 )

. = ? 1 = 9 eocey n

L '
n

(2'2) 1§1f13 =1, (J =1, «o., n) ’

(2.3) £y, 20,

(2.4%) maximize 8y, Lour

(One could equally well assume m men and n Jobs with
m 2 n, and state the problem in mixed equality-inequality form,
insisting that every Jjob be filled precisely once, and no man

be assigned to more than éne job.)

-—
That the combinatorial problem can be solved as a linear

programming problem can be seen in many ways. For example, as

is well known, the permutation matrices are the extreme points

of the convex set of doubly stochastic matrices, that 1is, the

convex set defined by (2.1¥ - (2.3), a fact that 1s readily

deducible, for instance, from Hall's theorem. Thus any linear

programming method that constructs an extreme point sclution, as

the simplex method does, would solve the assignment problem. Wuhile

our algorithm for Hitchcock problems does not guarantee an ex—

treme point solution, it does guarantee an integral solution,

and thus suffices.



Except for the fact that maximization has replaced mini-—
mization, the problem is now cast in familiar form. We can get
rid of this slight difference, if desired, by subtracting each

ai'1 from, say, K = max aiJ' and then minimizing
i,d

i,] 1,d
In this form the algorithm of the last section requires
no restatement to be applicable. Or one could use the dual of

(2.1) — (2.4), which can be written as

(205) "'ai + 53 2 aiJ' (1D J - 10 M | n)
(2.6) minimize ij )T
J i

to make necessary changes in the computation.

Since row and column sums are unity, each maximal flow
problem encountered in solving an optimal assignment problem is
of Konig —-Egerviry type, that is, a maximal set of independent
admissible cells is to be constructed. ‘

It follows from Theorem 1.1 that the number of labelings
required to solve an optimal assignment problem can not exceed
n2 + n =1, Actually a somewhat better bound can be odbtained
as follows. Suppose that a breakthrough has produced a partial
assignment containing v { n ones, and this is followed by non—
breakthrough with labeled rows 1 and labeled columns J. Then

23



Y] + |3] = v and hence |Y| { v. Consequently, since |I|
decrcases by at least one with each additional consecutive non—
breakthrough, there can be at most v + 1 such. It follows
that the total number of labelings is no greater than %(na + 3n - 2),
which i8 & uniformly better bound than the one given by Theorem
1.1.

While the optimal assignment problem is a special case of
the Hitchcock problem, it is equally true that a Hitchcock
problem with integral row and column sums a, and bJ can be
solved as an optimal assignment problem. For, taking the
Hitchcock problem in equality form, we may replace the 1th row
by a, rows, each having unit row eum and all having the same
costs aij’ and similarly for the columns, thereby obtaining
an equivalent n by n assigmment problem with n = ;}i = b, -
For computational purposes, expanding the problem in this way

i8 of course not worthwhile.

3. The general minimal cost flow problem. The construction of

minimal cost flows that fulfill demands at some nodes from supplies
at others, in a network in which each arc has infinite capacity
and a unit shipping cost, assumed nonnegative, has been referred
to in the linear programming literature as the transshipment
problem. Orden [ ] and others have recognized the fact that
such a problem can be converted to a Hitchcock problem. 1In the
next section, we shall present an equivalence between the
transshipment problem with capacity constraints on arcs (the
minimal cost flow problem) and the Hitchcock problem, but our

aim in this section 1s to treat the former directly.



The algorithm of this section was originally developed as
a means of solving the maximal dynamic flow problem [ ]. This
problem will be discussed later in the chapter (section 9).
Minimal cost flow algorithms of the same general nature as the
one of this section have also been described by Fujisawa [ ],
Jewell [ ], Dennis [ ], and Minty [ ].

Assume given a network [N;cﬁ] having sources S, inter—
mediate nodes R, and sinks T, arc capacities c(x,y), arc
costs a(x,y), with supplies a(x) for x € S and dgmands
b(x) for x € T. The problem is to sonstruct a feasible flow,
if one exists, that minimizes cost. That 1s, we wish to solve
the linear program

(3.1) £(x,N) - £(N,x)  a(x), xes,
(3.2) £(x,N) - £(N,x) = O, xe€R,
(3.3) £(x,N) — £(N,x) { - b(xi xeT,
(3.%) 0 r(x,y) £ o(x,y), (x,y)eq,
(3.5) minimize G%a(x.y) £(x,y) .

We suppose throughout that a(x), b(x), e¢(x,y) are positive
integers, a(x,y) nonnegative integers.

It 1s convenient, bhoth here and for later discussions of
other problems, to put this problem in slightly different terms.
The differences are these. Pirst, we shall assume a single

source and single sink by adding nodes s, t, if necessary, in
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the usual way (arc costs for the additional arcs may be taken
zero); second, we introduce the flow value v as an explicit
variable in the program; third, instead of minimizing the
function in (3.5), we shall maximize

(3.6) pv - T a(x,y) £(x,y).
a

Here p may be thought of as a parameter that consecutively
assumes the values 0, 1, 2, ... . Thus we are now considering

the sequence of programs

(3.7) £(s,N) —v=0

(3.8) | £(x,N) — £(N,x) =0, X £s8, ¢,

(3.9) - £(N,t) + v =0

(3.10) 0 £(x,y) £ e(x,y)

(3.11) maximize pv — E a(x,y) r(x,y).

We term the pth program of this sequence the pth related
program. The function to be maximized in the pth related

program places a value of p units on any unit of flow that gets
through the network, and a cost of a(x,y) on every unit of flow
in are (x,y).

For p sufficiently large, the related program asks for a
maximal flow that minimizes cost over all maximal flows. Hence
for large p, a solution either solves the original flow problem



(3.1) = (3.5) (if v equals the total demand) or shows the
latter to be infeasible. (Of ocourse, feasibility could be
determined to begin with by solving a maximal flow problem.)
The computation will generate successive flows ro = 0, rl. ooy
t?’ the last being a maximal flow. Each rp will be a solution
to the pth related program, and thus P will be a "sufficiently
large” value of p.

Before describing this computation, let us motivate it by

considering the dual of the p'!

related program. If we assign
dual variables w(x) to equations (3.7) — (3.9), and ¥(x,y)

to the capacity constraints f(x,y) { ¢(x,y), then the dual has

constraints

(3.12) - v(s) + 7(t) = p,

(3.13) v(x) ~ w(y) + v(x,3) 2 - a(x,3), (x,y5) ea,
(3.1%) v(x,y) 2 O, (x,3) €4,

subject to which the form
(3.15) Y. o(x,y) v(x,y)

a
48 to be minimized. (The equality appears in (3.12) sinee the
sign of v has not explicitly been restricted, although one
could do so,) We refer to the dual variables v(x) associated

with the nodes of the network as node unmbgrs,. the dual

£ 2
Again the reader who 1s so0 inclined may wish to interpret
these as potentials or prices.
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variables +v(x,y) as arc numbers. Although the node numbers

are not necessarily nonnegative, the ones constructed by the
algorithm will be, and in fact, nonnegative integers satisfying
v(s) = 0, w(t) = p.

Optimality eriteria for primal and dual are

(3.16)  7(x) = 7(3) + v(x,y) > - alx,y) = £(x,3) = O,
(3.17) v(x,y) > 0 = £(x,y) = e(x,y) .

It follows that if a flow £ and node numbers 1w can be

constructed satisfying

(3.18) ¥(s) = o, 7(t) = p,

(3.19) #(y) - v(x) € a(x,y) = f(x,¥) = 0,
(3.20) r(y) = 7(x) > a(x,y) = £(x,5) = ¢(x,y),
then, by taking

(3.21) v(x,y) = max (0, v(y) — v(x) - a(x,y)),

th related program and its dual

feasible solutions to both the p
have been found that satisfy (3.16) — (3.17), and are therefore
optimal in their respective programs. Consequently, we shall
make no explicit mention of the arc numbers, but shall deal
only with flows and node numbers, aiming at the optimality

properties (3.18), (3.19), (3.20).
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Although we have used general duality principles in arriving
at these optimality properties, it 1s easy to check directly
that these properties imply that f minimizes J a(x,y) r(x,y) — pv.
For if we define

(3.22) a(x,y) = a(x,y) + v(x) - #(y),

it follows that

T a(x,y) £(x,y) = Ja(x,y) £(x,y) + T w(x) £(x,y) = T »(y) £(x,y)
X,y X,y X,y X,y

= Ya(x,y) f(x,y) + ¥ w(x) § r(x,y) - § 7(y) ; £(x,y)

X,y x

= Ja(x,y) f(x,y) + T w(x) T [£(x,y) - £(y,x)]
X,y x y

= Ya(x,y) f(x,y) + v[x(s) - w(t)] .
X,y

Hence, by (3.18),
(3.23) ¥ a(x,y) £(x,y) = T a(x,y) £(x,y) - pv.

Now (3.19) and (3.20) clearly imply that f minimizes the
left hand side of (3.23), hence also the right.

As was the case for the Hitchcock algorithm, the minimal
cost flow algorithm consists, in essence, of solving a sequence
of maximal flow problems, each on a subnetwork of admissible

arcs, one difference being that now there will be two kinds of



inadmissible arcs, corresponding to (3.19) and (3.20). For the
former of these, the arc flow will be hold fixed at zero, whille
for the latter, the saturation condition will be maintained.
Thus each‘maximal flow problem can be thought of as one in which
upper bounds of zero are imposed on certain arcs, and lower
bounds equal to the arc capacity on others. (Each such maximal
flow problem will be feasible.) After solving by the labeling
method, the current node numbers are changed by adding a
constant to all node numbers corresponding to unlabeled nodes.
In the deseription below, we have assumed this constant to be
1. This is merely a descriptive convenience: it corresponds
to changing the parameter p to p + 1 d4instead of some possibly
larger value p + §. We shall say later on how large to take
8 in actual practice.

There are alternative ways of starting the computation.
The simplest is to begin with all node numbers equal to zero
and the zero flow. This corresponds to taking p = O, since
(3.18), (3.19), (3.20) are then satisfied.

Té describe the general cycle of the computation, let us
now suppose that we have an integral flow.'r and node integers
¥ satisfying (3.18), (3.19), (3.20) with w(t) = p (that is,

th

f solves the p " related program) and wish to construct an

integral flow r' and node integers r' satisfying the same
conditions with r'(t) =p + 1 (so that ¢' solves the (p‘+1)Bt
related program). lLet the admissible arcs for this cycle be

those for which
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(3.2%) *(y) — v(x) = a(x,y).

(Thus 1f a(x,y) D> 0, at most one of (x,y) and (y,x) is admis—
sible. For the starting point ¥ = 0, only arcs with
a(x,y) = O are admissible.) ,

Minimal cost flow routine [ ]. Perform the labeling

process on the subnetwork of admissible arcs, dbeginning with
the flow f. Thus the labeling rules are: node y can be
labeled from node x Af either

(a) (x,y) is admissible and f£(x,y) € c(x,¥),
(b) (y,x) is admissible and f£(y,x) > O.

If breakthrough occurs, change the flow in the usual way, and
re-label. If nonbreakthrough occurs, denote the present flow

(which may or may not be £) by f and define new node integers

by
r(x), x-€ X,

(3.25) r (x) =
v(x) +1, x¢e€¥X,

where X 48 the set of labeled nodes.

The routine is then repeated, using the new node integers
x' to define admissible arcs, and beginning with the flow f .
Eventually a maximal flow is constructed, as we shall show
later on. First we point out that if the flow f and node
numbers ¥ satisfy (3.18) —(3.20), then the same node numbers

¢l



42

and flow r' do also, simply because the routine does not

permit flow changes in inadmissible arcs. In addition, ¢’ and
]

v satisfy these conditions with r'(t) =p + 1, that 1is

(3.26) 7,(8) =0, f'(t) =p + 1,
(3.27) ¥ (y) = v (x) { a(x,y) = £'(x,5) = O,

(3.28) ¥ (y) =7 (x) D a(x,y) = £'(x,y) = e(x,¥).

Condition (3.26) 1s obvious from (3.25) and the fact that
8 €X,teX if nonbreakthrough occurs. To establish (3.27),
suppose ¥ (y) — v’ (x) < a(x,y). Then from (3.25) and the fact
that we are dealing with integers, we have =(y) — »(x) { a(x,y).
If strict inequality holds, then (x,y) was inadmissible through—
out the routine, and hence f (x,y) = £(x,y) = 0. 1If, on the
other hand, equality holds, then from (3.25) we must have
r'(y) = 7(y), 1'(x) = v(x) + 1, and hence x € X, y € X at
the conclusion of the labeling process. Since (x,y) was
admissible, it follows that r'(x,y) = 0, as otherwise x would
be labeled from y (labeling rule (b)), A‘contradiction. Thus
f‘(x,y) = 0 in either case, establishing (3.27).

The proof of (3.28) is similar.

Consequently, if we denote the outputs of the pth
application of the routine by fp and v, we may state the

4
following theorem and corollaries.



Theorem 3.1. The node integers =¥ _ and integral flow f

P P
satisfy the optimality properties (3.18), (3.19), (3.20)
for the pth related program. In addition, so do L and fp+1.

Corollary 3.2. The flows rp and fp+1 maximize the

linear form pv —Zj a(x,y) £(x,y) (where v is the value of f)

over all flows from source to sink. Moreover, the corresponding

node integers 'b and arc integers

Tb(x;y) = max(0, 1b(y) - rb(x) - a{x,y)) solve the dual program.
In particular,

(3.29) pv, -CEL a(x,y) £,(x,¥) = pv 4 —E a(x,y) f,4(x,y)

= 2 c(x,y) 7p(113)-

It follows from Corollary 3.2 that if rp is a maximal
flow, then fp minimizes total flow cost over all maximal flows.
It 18 also clear from this corollary that for all sufficiently
large p, rp must be maximal. One way of making this last
statement more precise is by introducing the notion of '"path
cost”’. Consider any path from 8 to t (I.1) and sum the
arc costs for all forward arcs of the path, then subtract from
this the sum of arc costs corresponding to reverse arcs of the

path. We call the resulting number the path cost.

Corollary 3.3. If p 4is greater than the maximal path cost

from s to t, then fp is maximal and minimizes cost over all

maximal flows.




By

Proof. 1If rp is not maximal, then there is a flow
augmenting path from s to t (Corollary I.5.2); that i1s, there
is a flow f of value Vv = Vote (¢ > 0) and a path from

8 to t such that

f (x,y) + €, 1if (x,y) i= a forward arc of the path,
£(x,y) = fp(x,y) - €, 1if (x,y) is a reverse arc of the path,
£,(x,¥), otherwise.

Hence, letting p' be the path cost, we have
]
g a(x,y) [f(x,5) - £,(x,3)] =p e pe=p(v-yv)

or

PV, -;L: a(x,y) £,(x,y) <pv -E a(x,y) f£(x,y),

contradicting Corollary 3.2. Thus rp is maximal, and hence
minimizes cost over all maximal flows.

Once a maximal flow has been constructed by the routine,
the original problem has either been solved or shown to
be infeasible. Thus Corollary 3.3 gives & bound on the compu—
tation. In terms of the number of individual labelings, this
bound would involve the total demand and the cost function.
As was the case for the Hitchcock problem, a bound can be
obtained that depends only on the total demand and the number
of nodes. The idea 1s the same: one looks at consecutive

occurrences of nonbreakthroughs between breakthroughs. If we

put the algorithm in slightly different terms, the difference



being that trivial nonbreakthrough situations are thrown ocut
by making a large enough node number change to ensure that at
least one more node will be labeled on the next labeling, then
such a bound is obtained easily.

To see what the node number change should be to guarantee

this situation, we need only examine arcs of the sets

(x,Y) ana (X,X), since adding a constant to w(x) for x e X

does not change the pattern of admissibility of arcs of the
sets (X,X) and (X,X). Thus we consider the following six
cases, the first three of which correspond to arcs of (X,X),
the last three to arcs of (X,X):

(a) ¥(X) - v(x) = a(x,X), (hence f£(x,X) = c(x,X)),
(v) =(X) - v(x) D a(x,X), (hence f£(x,X) = e(x,X)),
(¢) w(X) - v(x) € a(x,X), (hence f£(x,X) = 0),
(d) w(x) - #(X) = a(xX,x), (hence f£(X,x) = 0),
(e) w(x) = #(X) D a(X,x), (hence ¢£(X,x) = c(X,x)),

(£) w(x) - #(X) € a(X,x), (hence f(xX,x) = 0).

If we add a small constant 8 to w(X), e.g. 6§ =1, then
possible changes in the admissibility structure are indicated
by the diagram:

P
(3' - a >CS .
Q > 4a >f .

It follows that if we define a(x,y) by (3.22), we may

k5



determine a node number change & as follows. Pirst single

out the subsets of arcs corresponding to (c) and (e) above:
(3.30) @y ={(x,3) | xeX, 37X, a(x,3) Do},

(3.21) @, = g(x,y) | xeX, yex ax,y) < 0% .

et
(3-32) 51 ‘gin [E(x:Y)] »
1l
(3.33) 5, = min [- a(x,y)] .
672

Then the node number change
(3032‘) 6 = min (51552) >0

introduces at least one more admissible arc from one of the
sets (4 or‘?a. (Moreover, the optimality properties (3.18),
(3.19), (3.20) again hold for the old flow f and new node
integers.) Consequently the o0ld labeling can be repeated, and
in addition at least one more node can be 1abeled. Since the
source & 1s always labeled, the maximal number of consecutive
nonbreakthroughs cannot exceed the number of nodes in the network.
Admissible arcs corresponding to (a) and (d) above become
inadmissible for the next labeling.
We note the following corollary.

Corollary 3.4. The flow rp+5 maximizes the linear form




PV~ Y a(x,y) £(x,y) for all p' in the interval p p' <p+8.

Here 8 1s the node number change (3.34), and rp+b is the

flow that produces nonbreakthrough and the subsequent change &

in the minimal cost flow routine.

Termination of the computation 1s recognized when the mini-
mizing sets in (3.32) and (3.33) are both empty, which 18
equivalent to saying that every arc of (X,X) 18 saturated,
whereas every arc of (X,X) is flowless. ' Thus (X,X) is a minimal
cut and the flow is maximal.

The amount by which the dual form J c(x,y) v(x,y) changes
with an occurrence of nonbreakthrough can be determined directly,

or can be found from Corollary 3.4 as follows. Since ¢

: p+8
maximizes pv - ¥ a(x,y) £(x,y), we have
Z e(x,y) v (x3) = pvy 0 =T alx,y) 4 (7).
Since rp+6 also maximizes (p + 8)v — 3 a(x,y) f(x,y), we

have

(P + 8)vy g =¥ a(x,y) £,4(x,7) =T e(x,7) vp,4(x,7).
Hence

X elx,y) v(%,y) = T e(x,5) v, 4(xs¥) — 8V 4

Thus the dual form increases by 8 in going from related

vp+6
problem p to p + B.



For future reference, we state the following theorem. It

will be used in discussing the maximal dynamic flow problem.

Theorem 3.5. Let X;, X5, «ovs X (X =8, X = t) be any

chain from s to t. Then

k=1
(3.35) L lalxgxy,y) + 1o(xy5%y 1)) 2 P

ey rp(xi,x1+1) > 0 for all arcs of the chain, then
1b(xi,x1+1) > 0 for some arc of the chain, and equality holds

in (3.35).

Proof. The first assertion results from summing the

inequalities
To(xg) = plxg ) + p(x00%g0) 2 = alxgexy )

along the chain, and noting that 1b(s) = 0, 'b(t) = P.

Ir tp(xi,xi+1) > 0, then by Theorem 3.1, equality holds
in the last displayed inequality, hence also in (3.35) if every
arc of the chain has positive flow.

For the remaining assertion of the theorem, assume that
rp(xi,x1+1) >0, 1 =1, ..., k =1, and consider the labeling
process using rp that resulted in nonbreakthrough. Since
8 €X and t € X, there 18 a node x  of the chain with

X, €X, X .4 € X. 1r fp—l(xm’xm+l) > 0, then by Theorem 3.1,

'b—l(xm+1) "’b—l(xm) 2-a(xm'xnwl)'



If, on the other hand, fp—l(xm’xm+1) = 0, then, since the
flow in arc (x ,x ,) has changed, the arc was admissible
for the labeling process; that is,

"o-1{%n1) -"b-i(xm) = a(xyXyy)-

Now

'p(%n)" 'p_l(") ’
'b(xm+l)' 'b—l(xm+1) + 1.

Hence, since we have established

'b—l(xn+l)— 'b—i(xm) = a(x,,xp,,) 2 0,

it follows that

Yo (X Znyn) = 7p(xg,4) - 7p(xy) - alxgxy,,) > o

Example. To illustrate the construction of a maximal
flow that minimizes cost, consider'the network of PFig. 3.1,
in which the first number on an arc is its capacity, the second
its unit shipping cost. We assume that thé problem is an
undirected one, the given costs and capacities holding for both

directions.



Fig. 3.1

If we begin with all node rumbers zero and proceed with
the computation, no positive flow gets through the network until
#(t) = 15. The node integers 7,5 are shown in Pig. 3.2. Prom

these, admissible arcs are determined (indicated by black arrow—

heads in Pig. 3.2),and the labeling process (using fig = 0)
yields the flow th (shown in the lower left hand corners of
the boxes in Fig. 3.2) together with the final labeled set X
for the cycle (the shaded nodes of Fig. 3.2). Here 8 =1,
new admissible arcs are (x,,Xg), (x7,t), (xg,t), whereas
(17,16) becomes inadmissible by virture of having a positive
arc number '16(17’x6) =1 (shown in the lower right hand
corner of the box in Fig. 3.3; white arrowheads are used to
indicate flow directions in such arcs). Starting with f16
of Fig. 3.2, and labeling on the admissible subnetwork of
Pig. 3.3 produces the flow r17 showm in Fig. 3.3, and finally

the labeled set X for the cycle.
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Pig. 3.2 (rls,fls)
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Figures 3.4 — 3.9 show the subsequent outputs of the routine.
The flow r23 of Pig. 3.9 1s maximal (2 minimal cut being
shown by the heavy arcs) and therefore minimizes cost over all
maximal flows.

It is interesting to observe the behavior of the (undir—
ected) arc (17,16) throughout the ecomputation. Initially,
for small values of P, it carries flow from X to xg;
eventually the arc becomes admissible in the other direction,
and is ;aturated in this direction in the final flow.

Fig. 3.4 (7)7.71g)
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Pig. 3.9 (7pp,0p3)

4., Equivalence of Hitchcock and minimal cost flow

problems. It is clear that the Hitchcock problem 18 a special
case of the minimal cost flow problem. It is not so obvious
that the reverse is true. That the two problems are equivalent,
however, can be established in various ways. For instance, a
device due to Orden [ ] can be used to péss from a capaclity
constrained transshipment problem to a capacity constrained
Hitchcock problem; one can then apply a technique due to
Dantzig [ ] to convert the latter to a standard Hitchcock
problem. We shall not, in fact, follow this path. Rather we
shall exploit a method suggested by Wagner [ ] and make the

transition in one step.



We first remark that it entails no loss of generality to
take the general flow problem in equation form, that 1s

(%.1) £(x,N) - £(N,x) = a(x), xeS,
(&.2) £(x,N) — £(N,x) = O, x €R,
(5.3) £(N,x) — £(x,N) = b(x), xX€eT,
(4.%) 0 $ £(x,y) £ o(x,y), (x,y) € @,

(%.5) minimize J a(x,y) f(x,y).
Q

For 1f (4.1) and (%.3) are inequalities (respectively < and
2), then we may insert an additional sink t together with
the ares (S,t), each of these having large capacity and
zero cost, and place a demand at the sink equal to a(8) - u(T),
thereby obtaining an equivalent problem in equation form.

To convert the problem (4.1) — (4.5) to a Hitechcock
problem, define a bipartite network from the given one [N;d]
as follows. Each source in the new network corresponds to an
arc of the o0ld; we denote them by ordered pairs x,y; each
sink in the new network eorresponds to a node of the old. All
arcs of the new network lead from sources to sinks: source
x,y 18 connected to sink x with cost a(x,y;x) = O, and
to sink y with cost a(x,y;y) = a(x,y). The "other arcs”
are missing, or may be assumed to have infinite cost. (Strictly
speaking, we should take the latter point of view, since we
have defined the Hitchcock problem as though all arcs from
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sources to sinks are present. It 1s merely a convenience of
exposition, however, to throw out arcs unless they have either
the form (x,y;x) or (x,y;y), and we shall do this.) At
source x,y place a supply o(x,y); at sink x put a demand
e(x,N) — a(x), eo(x,N), or ec(x,N) + b(x) according as

x€S, xe€R, or x €T in the old network. Note that

c(x,N) — a(x) > O if the original problem is feasible, and that

balance of supply and demand in the original problem implies

the same for the new problem.

Example. If the original problem 1s that schematized in
Pig. 4.1, then the new problem is pictured in Pig. %.2.

a(1) b(5)

a(2) 6) bv(6)

Fig. 4.1
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e(1,2)
o(1,3)
e(2,3)
e(2,4)
o(3,%)
¢(3,5)
o(4,3)
o(%4,6)
e(5,%)
¢(5,6)

e(1,2) + 0(1,}) -»-(1)
0(2,3) + 0(2,4) - a(2)
o(3.4) + o(3,5)

c(h,)j + 0(4,6)

o(5,%) + ¢(5,6) + b(5)
b(6)

Fig. 4,2

The new problem 1s to determine arc flows f(x,y;z)
(thus f(x,y;z) 4is defined for (x,y)eZ, and z = x or
Z =y), that solve the program

(4.6) t(x,y;7) + £(x,y;x) = c(x,y),
- 3(!): x eS8,
(%.7) s [f(x,y;x) + f(y,x;x)] = c(x,N) + 0, x € R,
YEN

b(x), x e T,



(n'e) f(x,y;z) 2 0,

(4.9) minimize Z) a(x,y;y)t(x,y:;¥).
x,y)€

Suppose now that f(x,y) 4s feasible for the original
problem. Then define

(%.10) £(x,y;y) = £(x,5),
(%.11) £(x,y;x) = c¢(x,y) = £(x,5).

Thus arc flows in the new problem are nonnegative. In

addition, (%#.6) and (4.7) are satisfied, since

£(x,y:5) + £(x,y;x) = e(x,¥),

T [£(x,5;x) + £(y,x;x)] = o(x,N) — £(x,N) + £(N,x).
v

Conversely, if the new problem is feasible, and 1f we
define f(x,y) by (¥.10), it 1s clear that the constraints (8.%)

are satisfied. Also,

£(x,N) — £(N,x) -; [£(x,¥;¥) = £(y,x;5x)]

-5 [e(x,y) = £(x,¥:x)] = T £(y,x;x)
y y

by (4.6). Using (#.7), the right side of this equality reduces
to a(x), 0, or -b(x) accordingas x € S, x € R, or

x € T, verifying (4.1), (%.2), (.3).



Since it is also clear that corresponding feasible flows
in the two problems have the same cost, it follows that a
general minimal cost flow problem can be transformed to a

Hitchcock problem in this way.

5. A shortest chain algorithm. A special minimal cost

flow problem having independent interest is that of finding a
minimal cost (or shortest) chain from one node to another in a
network in which each arc (x,y) has an assoclated cost (or
length) a(x,y) 2 O. While this 1s a purely combinatorial
problem, it may also be considered as a minimal cost flow
problem by placing unit supply at the first node (the source)
and unit demand at the second node (the sink), taking arc
capacities infinite, and asking for a feasible flow that minimizes
cost. Since the algorithm of section 3 constructs an integral
flow, it solves the shortest chain problem. In other words, the
first unit of flow constructed by the algorithm travels by a
least cost chain.

Other ways of solving the shortest chain problem have been
proposed [ ]. One of the most interesting of these, an
analogue computation, has been suggested by Minty for the case
of undirected networks [ ]. Simply build a string model of
the network, the lengths of the pieces of string being pro—
portional to the given arc lengths, take the source in one hand,
the 8ink in the other, and stretch. Thus one 1s solving the
given minimum problem by maximizing! Indeed, the analogue
solves the dual maximum problem.
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Applications of the shortest chain problem are numerous;
some come to mind readily. For instance, in making up a table
of highway distances between eities, a shortest ehain between
each pair of cities needs to be computed. Or, in setting up a
Hitchcock problem, it is frequently the case that many alter—
nate shipping routes between a given source and sink exist,
and thus either a minimal cost route needs to be computed, or
the problem should be formulated directly as one of transship—
ment. Another problem that has been viewed, in its discrete
form, as a shortest chain problem, is that of determining the
least time for an airplane to climb to a given altitude [ ].

Our purpose in this section is to describe a combinatorial
method for the shortest chain problem that works under a less
restrictive assumption than the one above that a(x,y) 2.0,

the less restrictive assumption being: the sum of costs

around any directed cycle ig‘nonnegative.' (For an undirected

network, this assumption is no less restrictive: it implies
a ) 0.)

As in other methods for solving the shortest chain
problem, the method described below does more: 1t yields, on
one application, shortest chains from the source to all other
nodes of the network that can be reached from the source by

chains. Thus, for example, if one were faced with the problem,

- .

It can be shown that if no assumption is made about the
function a(x,y), then the shortest chain problem is equiva-—
lent to the "traveling salesman problem" [ ], for which no
really simple algorithms are known. Thus some Such assumption
as nonnegative directed cycle costs appears essential.



mentioned previously, of finding shortest highway distances
between each pair of some set of cities, it would not be
necessary to repeat the algorithm for each pair.

In essence, the algorithm works with the dual of the
shortest chain problem, although it is not necessary, in the
proof, to use this fact explicitly.

Shortest chain algorithm. (1) Start by assigning all

nodes labels of the form [—,¥(x)], where w«(s) = O,

7(x) = 00 for x § s.

(2) Search for an arc (x,y) such that

»(x) + a(x,y) < »(y).

(Here o + a = 00.) If such an arc is found, change the
label on node y to [x,w(x) + a(x,y)], and repeat. (That
is, the new w(y) 4s w(x) + a(x,y).) If no such arc is

found, terminate.

At any stage of the computation, 1f w(y) ( ® for
y #8, then y has a label whose first member is some node
x, and w(x) + a(x,y) { v(y), hence w¥(x) { co. For the
existence of the label [x,v(y)] 4mplies that at some (possibly
earlier) stage, w(x) + a(x,y) = #(y), and while w¥(x) may
be later reduced to produce an inequality, if w(y) were also
reduced later, either y 1is not labeled from x, or else
equality holds again. It follows that if, at any stage, one

starts at such a node y and follows the labels, then one



eventually either (a) arrives at s and must stop, or (b)
cycles.

Suppose that at every stage of the calsulation, case (a)
above holds for every y with w(y) ¢ c©o. Let

8 = Il,xa,...,xn - Yy

be the chain from & to y singled out by the labels at any
stage. Then

(5.1) 1{:1) + a(xi,x1+1) < w(xi+l) (1 =1,...,0—1)
and summing these inequalities along the chain gives

1
7(s) + :%1‘(‘1"1+1) < w(y).

But w{s) = 0, for otherwise & would be labeled from some

node, and case (a) would not hold. Thus

n-1
(5.2) w(y) 2,1Zla(x1.xi+1)-

It follows that the computation terminates, since chain lengths
are bounded below, and the node numbers #(y) are monotone
decreasing. At termination, (5.1) must be an equality, and
hence so is(5.2). Suppose that, at termination, there were a
shorter chain from 8 to y than the one yielded by the
labels, say

8 = ‘i,xé,...,x& = Y,

-

"n,
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Then, for this chain,

mn-
)

1
w(xy) + ln(x;.xi+1) < (x!).

im
But, since temination has occurred, we have
1(xi) + a(xi,xi+l) Z.r(xi+l) (L1 =1,...,m-1),

whence summing gives a contradiction.
Now suppose that at some stage of the computation, case

(b) above holds. Let

XysXgs ecesX) = X

be a directed cycle ylelded by the labels, and suppose that x‘1 was the
last node of the cycle to receive a label from its predecessor.
At this stage (immediately before x4 was labeled from xJ—l)

we had
t(xd) > w(xd_l) + a(xj_l,xj)
v(xd+l) 2_1(xj) + a(xJ,xJ+1) .

Lettinz primes denote the node numbers after labeling xJ from

xj—l' it follows that
THxgy) > wixg) +alxgxg,y) -
Hence, summing the inequalities

THxy) 270 (xy) + alxg,xy )
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around the directed cycle, and noting that one of them is strict,
we have
k=1

1:& a(x,,x,.,) <o.

Thus, under our assumption that no directed cycles have
negative lengths, case (b) cannot ocour, the algorithm terminates,
and at termination, shortest chains have been located from s to
all other nodes of the network that can be reached from 8 by
chains. Moreover, the node number for such a node 1is the
length of a shortest chain.

The shortest chain algorithm can be used to obtain a
better starting feasible dual solution for the minimal cost
flow algorithm of section 3. That is, instead of starting
with all node numbers zero (which yields a feasible dual so—
Jution in case that a 2.0), one can find a shortest chain from
source to sink by the method of this section, and then use the
resulting node numbers to initiate the computation of a maxi-—
mal flow that minimizes cost.

The algorithm can also be used if costs are allowed to
be negative, so long as directed cycle cosfa are nonnegative,
to begin the minimal cost routine. (In this case, taking
¥ = 0 for all nodes may not give a feasible solution.) The
computation from there on is no different, so long as it is
desired to find a maximal flow that minimizes cost, and the
theory of section 3 is unchanged. But if the constraints



are of the form (3.1) — (3.3) and negative costs are present,
it may be that an optimal solution yields strict inequalities
in (3.3), that 1s, it may be better to over—supply certain
demands, and thus the translation from (3.1) — (3.%) to (3.7) —
(3.10) may not be valid. However, a problem of this kind can
be dealt with by making minor changes in the method of section
3. We shall discuss this in detail in the next section.

6. The minimal cost flow problem: nonnegative directed

gycle costs. Before discussing the modifications needed in

the minimal cost flow routine to handle a problem of form

(3.1) = (3.5) with negative costs, perhaps we should first
Justify consideration of the latter, since it might appear that
negative shipping costs are somewhat unlikely. But there are
many problems that can be posed in transportation format that
have nothing to do with transportation. As one example, we
might consider an entrepreneur faced with the following problem.
In each of N successive time periods he can buy, sell, or
hold for later sale, some commodity, subject to the following

constraints. In the 1th

period, there is an upper bound

a, 2 0 on the amount of the commodity that he can purchase,
an upper bound ¢, 2 O on the amount he can hold for the next
period, and a lower bound b, 2 O on the amount he sells
(perhaps because of prior agreements). Assuming that the
entrepreneur knows buying, selling, and storage costs

Py 20, 8, 20, By 2 0, respectively, for each period, how

does he maximize profit over the N periods?

(o



One can represent this problem as that of determining a
minimal cost flow from source s to sinks tl’ ooy tN in the
network shown (for N = 5) in Pig. 6.1, where the demands at the
sinks must be fulfilled.

Pig. 6.1

Thus negative "transportation" costs can arise naturally.
Notice too that since the representing network for this pro-—
blem contains no directed cycles, the nonnegative directed
cycle condition is satisfied automatically.

We return to the linear program (3.1) — (3.5). The
supplies a(x), demands b(x), and capacities c¢(x,y) are, as

usual, assumed to be positive integers.
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Dual constraints for this program can be written as

r(x) - v(y) + v(x,5) 2 ~ a(x,y),
v(x,y) 2 0,

r(x) 2 0, forx € SUT,

and consequently optimality properties for a feasible flow f

and node numbers ¥ are

(6.1) *(y) - v(x) < a(x,5) = £(x,3) = 0,

(6.2) *(y) - v(x) > a(x,y) => £(x,y) = c(x,¥),

(6.3) =(x) >0, x €38; ‘r(;) >0, x € S => £(x,N) - £(N,x) = a(x),

(6.8) wx(x) 20, xeT; v(x) >0, x € T=> f£(N,x) - £(x,N) = b(x).

We shall show how to use the minimal cost flow routine in order to
produce f and ¥ satisfying these propertles.

We first extend the given network [N; ¢ to *; &1 vy
adjoining nodes s, t, the arcs (s,S), (T,t), and defining

c(s,x) = a(x), a(s,x)=0, x €38,
c(x,t) = v(x), a(x,t) =0, xe¢€T.

This extension maintains the nonnegative directed cycle cost
condition.

Next compute a maximal flow that minimizes cost over all
maximal flows by the method of section 3, starting this time with



node numbers obtained from the shortest chain algorithm.
Assuming that the problem is feasible, the computation termi-
nates with a flow f for which

£(y,t) = ¢(y,t) =d(y), yeT,

and node numbers w(x) satisfying

(6.5) r(s) = 0,

(6.6) w(y) - (x) < a(x,y) => £(x,y) = 0, (x,3) e &,
(6.7) ¥(y) = #(x) > a(x,3) => £(x,5) = e(x,3), (x,7) €.

We now consider two cases.

Case 1. ¥(y) 20 all y e T. In this case the computation
ends, since the restriction of f to (] solves the original
problem. To see this, we check the optimality properties (6.1) —
(6.4), using w. The first two of these are obvious, since they
hold in the extended network. For (6.3), we note that the com—
putation began with node numbers of zero for x € S, and thus
7(x) D 0 for x € S by virtue of monotoniecity. If w(x) > O
for x € S, then w(x) — w(s) > a(s,x) = O, and hence
£(s,x) = o(s,x) = a(x) by (6.7). Thus f£(x,N) — £(N,x) = a(x).
Property (6.3) follows from the case assumption and the termination

condition f£(y,t) =b(y) for y € T.

case 2. w(y) O for some y € T. Join such y to a new
sink u by arcs (y,u) with



e(y,u) = ©, a(y,u) = 0.

Call the resulting network |[N; &). Extend f and ¥ to &
and N, respectively, by defining

f(y,u) =0, w(u) = min w(y) €O.

yeT

Now continue the computation, starting with ¥ and f, and
treating u as the sink, until a flow ¥ and associated node
numbers ¥ are constructed with ¥(u) = 0. (We may think of
increasing the node numbers on unlabeled nodes by unity at
each nonbreakthrough, stopping when ¥(u) = 0.) Properties (6.1),
(6.2), (6.3) now hold for the restrictions of ¥ and ¥ as in
Case 1, and thus we need only verify (6.4). First consider
those y € T for which w«(y) 2> 0. For such y, ¥(y) > 0. More—
over, f(y,t) = £(y,t) = b(y) for these y, and thus (6.%) holds.
(Observe that the second part of the computation does not change
£(y,t) for any y € T.) On the other hand, since the additional
arcs (y,u) have infinite capacity and zero cost, it follows th
from (6.7) applied to ?, ¥ that ¥(u) —5;(y) = —¥(y) £ 0, and
thus ¥(y) 2 0 for the remaining y € 7, also. If 0 < ¥(y,u),
then w(y) = 0 from (6.6), (6.7), and the fact that ¥(y,u) € 0.
Consequently, if ¥(y) D> O, then

0= ?(Y:“) = ?(N:Y) - ?(yoN) - ?(Y:t):
and hence

¥(N,y) - ¥(y,N) = ¥(y,t) = £(y,t) = b(y).
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7. The warshousing problem. A problem similar to, but
simpler than, the entreprensur example described in the last

section is one known as the "warshousing problem" [ T].
Again we think of an entrepreneur who purchases, stores, and
sells, in each of N sucecessive periods, some commodity that is
subject to kmown fluctuations in purchasing costs and selling
prices. The differences between the present problem and the
previous one are these: '(a) the entrepreneur has a warehouse
of fixed capacity in which new purchases and holdovers from
the previous period are stored before selling; (b) the only
limitation on purchases or sales in each period is that
represented by the warshouse capacity; thus supplies are infinite
and demands are gero. Again profit is to be maximized.
Adopting the notation

Pyt amount purchased in period 1,
LI amount placed in warehouse after purchasing in period i,
8t amount sold in period 1, |
hit amount held in warehouse after selling in period i,
¢: warehouse capacity
Py purchase eost per unit in period 1,
ii: warshouse cost per unit in period 1,

iis selling price per unit in period i,

the constraint equations and inequalities for the warehousing



T

problem can be written as

h1_1+p1-'1 -0, (1'1,....“; ho.O)’
(7.1) w -8, -h =0, (L=1,...,0 by=0),
Hisc .

Here ell variables are nonnegative. Subject to these con-

straints, it is desired to minimize

N
(7.2) z (
i=]

iipi + ﬁiul "il'i)‘
(We could start with a positive initial stock ho. and allow the
possibility that the final stock hN can be positive also. Since
this makes no essential difference in the subsequent analysis,
we have assumed h; = h, = 0.)

Again we can represent this problem as a minimal cost flow
problem in a suitable network; it is little different in
structure from the previous one. Such a network is shown, for

N= 3, in Pig. 7.1, with the associated arc flow variables.

w e




The extremely simple nature of the problem becomes more
apparent through a different network representation than the
one of Pig. T.l. This representation is due to Dantzig [ ].
To deduce it, we return to the constraints (7.1) that describe
the problem, and replace the warehouse capacity inequality

", € ¢ by the equation in nonnegative variables

Thus u, represents the unused capacity of the warehouse in
period 1, and the constraints (written out for N = 3) appear
in detached coefficient form as follows:

Py ¥ 83 hy uy P, W, 8, hy Uy Py Wy B3 Uy

(1) 1 1l =g
(2) 14 -0
(3) 12 : =0
(») 1 1 -0
(7.3) (5) 1 1 -1 =0
(6) 12 -0
(7) | 1 1=¢
(8) 1 14 -0
(9) 1-1 =0.

If we now replace equation (7) by — (7) + (%) = (6) - (8),
(3) by = (¥) + (1) = (3) = (5), and (1) by = (1) - (2) (in
general, replace equation (3n + 1) by — (3n + 1) + (}5 - 2)
= (3n) - (30 + 2)), and then chanée signs throu@out, a



equivalent system is obtained:

(7-%)

(1)

(2) -l 1

(3)
(2)
(5)
(6)
(7)
(8)
(9)

Py ¥ 83 by uy Py W,y 8, By Uy Py Wy By Uy

l

|

-1 1 1

-1 -l 1
-1 -1 1
-l

b I |

-l -1 1

-1

-l 1
-1 1

T

]
0o O O O

The coefficient matrix of the new system has (except for

the last two columns) precisely ocne + 1 and one =l in each
Thus (7.4) again

column, the other coefficients being sero.

has a network representation, shown in Pig. 7.2, where the
(redundant) equation eorresponding to node 10 1s the sum of all
the equations of (7.4).

(Bource

4supply ¢) @

P

Qink

10) §demand ¢)



In this network representation, arca corresponding to the
varisbles Pys %yo 8y still have costs ii, w,, -il, and we are
asked to find a minimal eost flow of ¢ units from source to
sink. But since there are mo eapacity restrictions on ares,
and there are no directed cycles, there is
an optimal flow in which all ¢ units travel by a nininal cost
ehain from source to sink. Thus it suffices to find such a
echain in order to solve the problem. Several facts emerge
from this:

(a) The capacity of the warehouse plays no role in
deter-ihing the form of an optimal solution.

(b) There is an optimal pattern of buying and selling
of the all or nothing kind, that is, whatever action is taken
in a period is pursued to the limit of warehouse capacity.

(¢c) The total profit for N periods is a multiple of

the warehouse capacity.

Beocguse of the simple structure of the representing net—
work, an optimal poliey (least cost ehain) can be determined by
the following trivial caleulation. Start at the source, say,
and compute node numbers recursively as illustrated below for
=3

T, =0, 7, = LI ii, Ty =T, + ?i
Ty = nin(vl,r3 -ii), Ty = nin(wu + ﬁé,v3), Tg = Vg + Fé

Vlo = -111(77,19 - 33),
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The v, 8o determined constitute an optimal dual solution to
the least cost chain problem, and by keeping a record of where
the various minima occur in the calculation, & least cost chailn

is singled out.

8. The caterer problem. Another example of a minimal

cost flow problem is the "caterer problem" [ ]. Imagine a
caterer who knows that he will require r, 2 O fresh napkins
on each of N successive days, J =1, ..., N. He can meet
his needs ;n two ways: by purchasing new napkins, or by using
napkins previously laundered. However, the laundry has two
kinds of service, quick and slow. A napkin sent for quick
laundering is available for use m days later, whereas a
napkin sent for slow service is available n days later,
0 {m { n. New napkins purchased from the store cost p cents
each, quick laundry service is q cents per napkin, and slow
service 8 cents per napkin. How does the caterer, who starts
out with no napkins, say, meet his requirements at minimal cost?
The problem perhaps appears somewhat less frivolous 1if
stated in terms of aircraft engines and quick and slow over—
haul (its actual origin [ ]), but we shall stick with napkins
and laundering.
Let Py 2 O represent the number of new napkins purchased

th day (remaining requirements on that day

for use on the J
are supplied by laundered napkins), ’3 2}0 the number sent

for slow laundry service, qJ 2.0 the number sent for quick service



and h 32 O the number of soiled napkins held over to the next
day. Then the problem faced by the caterer is to solve the

linear program in nonnegative variables:

(8.1) Py+ 80t 2T5 (§m1,ee.,N)

N
(8. 3) minimize b (fJ'
=1

Py + 'c'qu'1 + ‘s'JsJ) .
Here variables with subscripts not in the range 1, ..., N are
suppressed.

The constraints(8.1) and (8.2)can be represented in net—
work form. The representation can be made clear by considering
an example with m = 1, n = 2, N= 4, for which a suitable net—

work is shown in PFig. 8.1.

(supplies) (demands)
N1
T2
r (Btore
3 £supply o )
Ty

Fig. 8.1



The problem faced by the caterer is to compute a minimal cost
flow that satisfies the demands at the sinks from the supplies

at the sources.
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9. Maximal dynamic flow [ ]. The problem taken up in

this section may be stated informally as follows. Given a net-
work G = [N; @] with source s and sink t, suppose that each
arc of G has not only a capacity, but a traversal time as
well. If, at each node of G, the commodity can either be
transshipped immediately or held over for later shipment, determine
the maximal amount of commodity flow from source to sink in a
specified number of time periods. For example, in the network
of FPig. 9.1, the first number on an arc is its capacity in

terms of commodity flow per unit time, the second number is the
arc traversal time. How many units of the commodity can reach

t from 8 in 5 time periods, say, and what is a shipping
schedule that achieves this?

3,3 2,1




One feasible 5-period shipping schedule is shown schematically
in the time—sequenced Pigures 9.2 to 9.6 below.
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Here Pig. 9.2 means that 4 units leave s at initial time
0, 2 units bound for x, the other 2 units for y; at time 1
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the 2 units going to x have traversed 1/3 of the arc
(s,x), and the other 2 units have arrived at y. Thus Figure
9.2 represents the time interval O to 1, and so on. At time
3, 1 unit arrives at t; 3 more units arrive at time 4, & more
at time 5, giving a total flow from s to t of 8 units in the
periods O0-1l, 1-2, ..., 4=5. Is this a maximal dynamic flow
for 5 periods, or is it possible to do better?

One can formulate the maximal dynamic flow problem as
follows. let o(x,y), a(x,y) be the capacity and traversal
time of arc (x,y); we take these to be positive integers. Ilet
r(x,y;f) be the amount of flow that leaves x along (x,y)
at time T , consequently arriving at y at time < + a(x,y).
Also f(x,x;1) 18 the hold-over at x from € to T + 1. If
v(p) is the net flow leaving s or entering t during the
p periods O tol, 1to 2, ..., p=1 to p, then the problem may
be stated as the linear program:

(9.1) maximize v(p)

subject to the constraints

(9.2) E Y [t(s,y;%) - £(y,8;%a(y,s8))] = v(p) =0
=0 yeN

(9.3) :N [£(x,y;7) - £(y,x;%a(y,x))] =0 (x$s,t;%= 0,1, ..., p)
ye

(9.4%) E ZN [£(t,¥y;7) — £(y,t;7a(y,t))] + v(p) = O
™0 Yye

(9.5) 0 r(x,y;%) £ e(x,y) . '



Here a(x,x) =1, e(x,x) = o0 for hold-overs at node x. It
is also tacitly assumed that a variable f(x,y;T) 4is suppressed
1r ¢ (0, or if, for x ¢y, (x,y) 48 not an arc of the given
network @G. Then the constraints (9.3) assert that for each
intermediate node x and each time T, the amount of flow that
"enters" x at time T (including the amount held over at x
from time T-1) 1s equal to the amount that "leaves" x at
time 7 (including the hold—over at x until time T+ 1).
Similarly (9.2) says that v(p) 1s the net flow leaving 8
during the p periods, and (9.4) insists that v(p) 1s the net
flow arriving at t within the time interval. We could, of
course, omit from G Ainward pointing arcs at s, outward
pointing arcs at ¢t.

Ir f£(x,y;t) and v(p) satisfy (9.2) - (9.5), we call
f & dynamic flow from s to t (for p periods) and say that

f has value v(p). If also v(p) is maximal, then f 1s &
maximal dynamic flow.

Although the constraints that describe dynamic flows may
appear complicated, they are, in actuality, no more so than the
simpler appearing ones for statlc flows. Indeed, a p-period
dynamic flow through a network G corresponds to a static flow
in a time—expanded version G(p) of G. Here the network G(p)
may be constructed from G as follows. Corresponding to node
xof G, aG(p) has p + 1 nodes x(t), T=0, 1, ..., P;
corresponding to arc (x,y) of G, G(p) has arcs

[x(1), y(r+a(x,¥))], 0<£T<{p - a(x,y); 1in addition, we put

in ares [x( 1), x(7+ 1)], 0< TP -1, to represent hold-overs
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at node x. A replica [x(7), y(v+ a(x,y))] of (x,y) has
capacity e¢(x,y), whereas we have assumed that a2 hold-over arc
has infinite ecapacity. (It will turn out that there always
exists a maximal dynamic flow that avoids hold-overs at inter—
mediate nodes, so the capacities placed on these latter are of
no consequences.) If we take s(0), s(l), ..., s(p) as sources
in a(p), t(0), t(1), ..., t(p) as sinks, then the constrainis
characterizing a p—period dynamic flow from s to t in G
are just those for a static flow from sources to sinks in
6(p). (In view of the existence of hold-over arcs at s and t,
we could equally well take s(0) as the only source, t(p)
as the only sink in a(p).)

Fig. 9.7 below shows the S—period dynamic version of the
network of Fig. 9.1, together with the (atatic) flow in this
network that corresponds to Figures 9.2 to G.6. All arcs are

directed from left to right.
0 | 2 3 ' 4 5

S S S S S S




Using Pig. 9.7, it ean be ehecked that the flow shown there is
maximal. A minimal cut & = (X,¥) 4= given by taking the set

X to consist of the nodes

5(7) s T = osla see, 5,
X(T) , T=3,4,5,
Y(f) s T = 3:4:50

By expanding the network in the fashion deseribed, the '
maximal dynamic flow problem can always be solved as a maximal
static flow problem in the enlarged network. Moreover, it may
be noted that blowing the problem up into an equivalent static
problem does not require keeping arc capacities and traversal
times fixed over time, as we have done. But these simplifying
assumptions are essential for the much more efficient solution
process to be described, which will deal only with static flows
in the smaller network G.

Specifically, it will be shown that a maximal dynamic flow
can always be generated from a static flow by the following
device. let f be a static flow from s tot in G that

maximizes the linear function

(9.6) (p+1)v -E a(x,y)r(x,y).

The problem of constructing such an f has been solved in
section 3. It is a simple matter to decompose f into a set
of chain-flows from 8 to t, that is, one can easily obtain from

the node-arc flow f a corresponding arc—chain flow (see 1.2).



For example, & labeling procedure can be described to effect
such a decomposition of f. Then, roughly speaking, & dynamic
flow can be generated from the chain decomposition of f by
starting each chain flow at time zero, and repeating each so
long as there is enough time left in the p periods for the
flow along the chain to arrive at the sink. This dynamic flow
will be maximal for p periods.

For example, in the network G of Pigure 9.1, an f that
maximizes (9.6) with p = 4 has a chain decomposition

(B,I,t;l), (3:y:t31): (s.y,x,t;l),

that 18, 2 flow of 1 unit along each of the indicated chains.
The traversal times of these chains are respectively 4,4,3.
Consequently the first two chain flows can be repeated once in \
% periods, the last chain flow twice, giving a total flow into

t of 4 units in the time interval O to 4. This (maximal)

flow in G(3) 1is shown in Fig. 9.8.




We shall call a dynamic flow (i.e., a static flow in @(p))
that can be generated by repeating chain flows of a static flow
in G, a temporally repeated flow. Notice that the maximal

dynamic flow shown in Fig. 9.7 is not a temporally repeated
flow.

The fact that there always exists a maximal dynamic flow
within the subclass of temporally repeated flows is not evident.
But if one knew a-priori that this were the case, it is not
difficult to see that (9.6) is the appropriate function to
maximize over static flows. PFor if f maximizes (9.6), then
(9.6) can be rewritten, in terms of a chain decomposition of

£, as
(9.7) 2 (p+l = o )n ..
r

Here o, is the traversal time of the rth chain in the
decomposition, hr the amount of flow along this chain. (Prom
the discussion in I.2, we would have only (9.7) 2 (9.6).
Actually equality holds if £ maximizes (9.6), but in the
formal proof to follow later, the inequality suffices.) Since
f maximizes (9.6), it follows that o, { p+1, and hence the
coefficient of hr in (9.7) counts the number of times the
r*" chain flow can be repeated in p periods. That 1is, (9.7)
or (9.6) is the value v(p) of the temporally repeated flow
generated dby f.

This provides the heuristic background for examining static

flows that maximize (9.6).



Suppose that fp+1 (notation as in section 3) has
been constructed using the minimal cost flow routine discussed
in section 3. Thus f . maximizes (9.6).’ In this construction,
certain node and arc numbers 1b+1(x), 1b+1(x.y) are produced.
The key to proving that fp+1 generates a temporally repeated
flow that 1s maximal in G(p) 1lies in these node and arc
numbers, since they can be used to single out a cut in a(p)
that has capacity equal to v(p) given by (9.6), thus proving
that the flow is maximal and the cut minimal.

We proceed to a formal proof.

Decompose the flow rp+1 into a collection of chain flows
from 8 to t. lLet

(9'8) (xl' Xpy e0es Xy s h) (xl = 38, xk =t, h > 0)

be any one of the chain flows in this decomposition, and

define correspondents of this chain flow in a(p), namely

(9.9) (11(71): 12(12)0 ooy xk(?k)‘ h).

Here

(9.10) Toel =Ty *+ 8(Xgs X444)
and

(9.11) t, 20, 7 <P

This 18 to be done for all chain flows in the decomposition of

£

p+1° (Although a chain decomposition of a flow f 1s not



necessarily unique,'this need cause no concern. Any decomposition

will serve.)

That such chains exist in G(p) follows from the second

part‘of Theorem 3.5 by taking 7

traversal time of the chain (9.8), we have

= 0. Then, since % is the

k=1
(9.12) T +1§1 7p+1(x1"1+1) = p+l,

and since some arc number in this sum is positive (by virtue
of the condition h > 0), it follows that T < p.
Hence, the number of correspondents (9.9) of (9.8) is

given by

k=1
(9.13) P+l = % ’iia 7b+1(x1’x1+l) > o.

It is readily checked that the temporally repeated flow
equal to the sum of all of the chain flows thus defined in
G(p) 4s really a flow in G(p) from sources to sinks; the
only thing that remains to be verified 1s that arc capacities
in G(p) are not violated. But this follows at once from the
fact that fp+1 violates no arc capaclty'ln G. Prom (9.13),
the value v(p) of this temporally repeated flow is

(9.1%) v(p) =1 (p+1 ~ o )n, .

r
Here c} i3 the traversal time of the rth chain in the
decomposition of rp+1 and hr is the amount of flow along

this chain. It follows that
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(9.15) v(p) 2 (p+1)vy —sz'. a(x,y)fp,; (x,5).

Here v §8 the value of ¢

p+l
3.2, we have

p+l1° By (9.15) and Corollary

(9.16) v(p) Zczt Yp41(2:7) e(x,¥).

Now define the following set of arcs in G(p):

(9.17) € = i[x(r). y( +a(x, )], 4 (x) o< r ,(x) = a(x,3)] -

In other \vords,@ is the set of arcs that lead from any node

of
(9.18)  x ={x(v)|wyy(x) { 7]

to its complement X. Since every source of g(p) 4s in X
(because rp+1(s) = 0) and every sink is in X (because
rp+1(t) = p+l), it follows that @ = (x,X) 1s a cut in a(p).
(Notice that this eut contains no hold-over arcs.,) But from
(9.17) and the definition of the arc numbers, the capacity of
@ is equal to

(9.19) CZZ'rp+l(x.y) e(x,y).

Hence from (9.16), the temporally repeated flow gen2rated by
tp+1 18 a maximal dynamic flow in G(p), and the cut (9.17)
is minimal. This proves



Theorem 8.1. The static flow f,. BEenerates a

temporally repeated dynamic flow that ;g'maximal over all dynamic

flows for p periods. This dynamic flow has value

v(p) = (p+1)vp+1 - z a(x,y)fp+1(x,y), where Vp+1 is the !i]ﬁ‘.

of f,,,+ The cut @ defined by (9-.17) is a minimal dynamic

cut for p periods.

A verbal way of deseribing the minimal dynamic cut
in terms of the arcs of the original network G 1s to say that
the arc (x,y) of G first becomes a member of the cut at time
T = 1b+1(x) and remains in the cut for 7p+1(x,y) periods.

Since the routine of section 3 eventually stabllizes on a
maximal static flow that minimizes total flow time ¥ a(x,y) f(x,y)
over all maximal static flows, it follows that for all sufficlently
large p, such a static flow generates maximal dynamic flows.

Thus the maximal dynamie'flow problem can be solved for all p
by a finite (and efficient) process.

The following fact is worth mentioning. If ¥(p) denotes
the maximal dynamic flow value for p periods, then we have,

in view of Theorem 8.1 and Corollary 3.2, .

(9.20) V) =7 (p—1) = vy

Thus, since the sequence vp 48 monotone nondecreasing in p,
80 are successive differences of V(p). In other words, the
plecewise linear curve obtained from the sequence of points
(p, ¥(p)) by joining adjacent points with line segments is

oeonvex.
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We turn now to a different question concerning maximal
dynamic flows, one that was raised and answered by Gale [ 1.
Consider a maximal dynamic flow for p perlods, or equivalently,
a maximal static flow in G(p). What happens if we restrict this
flow to p' { p periods, that 1s, to G(p'). Will it still be
maximal? The answer is no, in general. For example, a temporally






repeated flow generated by o4l is maximal in G(p), but may
not be in G(p'). Even more, it can be seen that if there were
a maximal dynamic flow for p periods whose restrictions are
also maximal for all fewer periods, one may be forced to look
outside the class of temporally repeated flows. The example of
Pig. 9.1 18 a case in point, since for p = 5, there 1is no
temporally repeated flow in G(5) that sends 1 unit into t(3),
3 more units into ¢t(4), and ¥ more units into t(5),
as does the flow of Pig. 9.7. It 1s true, nonetheless, that
such "universal" maximal dynamic flows always exist.

An easy proof of this can be given from the second version
of the supply~demand theorem (Corollary II.1.2) by setting up
the demand schedule in a(p):

v(o) at t(0),
v(1) - v(0) at ¢t(1),
(9.21) { ¥(2) -=V(1) at t(2),

| ¥(P) = ¥(p-1) at t(p).

Here V(1) 18 the value of a2 maximal dynamic flow in G(7),
which can be assumed to be from s(0) to t(<). Now let X

be an arbitrary subset of the sinks t(t), %= 0,1, ..., P, and.

let k be the largest value of T for which t(t) 18 in X.

Then the aggregate demand over X does not exceed

Kk
V(k) = ¥(0) + 1}:1[?(1) - v(%1)].

152



But there is a flow from s(0) to t(k) in G(p) that has
value V(k). Hence, by the supply—demand theorem, the demands
(9.21) are feasible.

It should be observed that this result makes no use of the
simplifying assumptions that arc capacities and traversal times
are independent of time, but rather holds for the more general
case where these quantities change with time.

gz



10. Project cost curves [ ]. A problem of some practical

importance that has been described by Kelley and Walker [ ]
involves eomputing the cost curve for a "project” composed of
many individual "jobs" or "activities". Here a project is a
partially ordered set of jobs, the partial ordering arising from
technological restrictions that force certain jobs to be
finished before others can be started. It is assumed that each
Job has an assoclated normal completion time and a erash
completion time, and that the cost of doing the job variles
linearly between these two extreme times. Then it would be
desirable to calculate the least project cost, given that the
entire project must be completed in a prescribed time interval.
This would yileld one point on the project cost curve. Solving
the problem for all feasible time intervals produces the complete
project cost curve. With this information at hand, the project
planner can answer either the question posed above, or the
related question: given a fixed budget, what is the earliest
project completion date?

We shall show how the project cost curve can be easily
computed using network flows. '

There are at least two alternative ways of depicting the
project as a directed network. For example, suppose the project

consists of Jobs 1,2,3,4,5 and that the only order relations are:

1 precedes E.‘o
2 precedes ’
3,4 precede 5,
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and those implied by transitivity. A usual way of picturing
this partially ordered set is shown in Pig. 10.1, where

nodes correspond to jobs and directed arcs to the displayed
order relations. Another way 1s shown in PFig. 10.2, where
some of the arcs represent jobs, and the nodes may be thought
of as events in time; the existence of a node stipulates that
all inward pointing jobs at the node must be completed before
any outward pointing job can be started. Notice that the
second of these two representations of the project uses an arc
(the dotted one of Fig. 10.2) not corresponding to any Jjob.
This need cause no concern, since a dummy job can be added to
the project to correspond to such an arc, and the assumption
made that dummy jobs have zero completion time and zero cost.
It 15 not difficult to see that allowing durmy jobs permits such
a network representation for any project. Indeed, one could

merely take the kind of network shown in Pig. 10.1, replace each
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node x by a pair of nodes x', x" and add arcs (x',x") to
the network. Correspondents (x",y') of the original arcs
(x,y) then become dummies. But this 18 not, in general,
efficient in terms of the number of nodes and arcs.

Using either of these mt.:work representations of the project,
the problem of computing the cost curve can be shown to be a
flow problem. We shall assume that a latter representation is
at hand. Thus we take as given a directed network in which arcs
correspond to jobs and nodes to events. This network contains
no directed cycles. We may also assume, by adding dbeginning and
terminal nodes 8, t, if necessary, together with appropriate
arcs pointing out from s and into ¢, that each arc is contained
in some directed chain from 8 to t. Ve suppose that each arc
(x,y) has associated with it three nonnegative integers:
a(x,y), v(x,y), e(x,y), with a(x,y) { b(x,y), the interpretation
being that a(x,y) 4s the crash time for (x,y), d(x,y) the
normal completion time, while c(x,y) is the decrease in cost
of doing job (x,y) per unit increase in time from a(x,y) to
b(x,y). In other words, the cost of doing (x,y) in 7(x,y)
units of time is given by the known linear function

(10.1) k(x,y) - e¢(x,¥)7(x,¥)

over the interval

(10.2) a(x,y) { 1(x,y) { v(x,y).
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‘Then the problem is, given A units of time in which to
finish the project, to choose, for each job (x,y), a time
«(x,y) satisfying (10.2) in such a way that the resulting '

project cost

(10.3) T [x(x,y) - e(x,y) *(x,7)]
X,y

1s minimized, or equivalently, the function

(10.%) T e(x,y) <(x,y)
X,y

is maximized. "Thus, letting t(x) be the (unknown) time
of occurrence of event x, we wish to maximize (10.84) subject

to the inequalities

(10.5) (x,¥y) + «(x) = «(y) Lo,

(10.6) - 7(s) + 1(t) <A,

(10.7) (x,y) < v(x,y),
(10.8) -1(x,y) £ - a(x,y).

Then the project cost P(A) ecorresponding to the assigned
value of A 41n (10.6) 1= given by

(10.9) P(2) = Z k(x,y) — max Z e(x,y) t(x,¥),
X,y X,y

the maximmm being taken over all =(x,y), t(x) that satisfy
the constraints. Here we assume the constraints are feasible,

which will certainly be the case for large A. Indeed, for



given T(x,y) satisfying (10.7) and (10.8), the constraints
are feasible if and only if A 41s at least equal to the
+length of a longest chain from s to t. The proof of this
relies on the fact that the project network contains no directed
cycles.
Dummy jobs ean be assumed to have lower bounds a(x,y) = O,
upper bounds b(x,y) = O, and costs ec(x,y) = O 4n this program.
It may be observed preliminarily that P(A), which is well
defined for some J)-interval, iz convex. For if Al’ 12 are
two given values of A that make the constraints feasible, and
ir ?1(1oy): Tl(x). 12(x.y), 7,(x) represent optimal solutions
to the two corresponding programs, then averaging these two
solutions gives a feasible solution to the constraints corresponding
to the X—value 1/2()\;+)\;). Hence, since we are minimizing '
r(2),

p(’—l;‘-’-?-) £ 1/2 B(2)) + 1/2 P(;).

In addition, P(A) 1s plecewise linear, as will be apparent
later on. ‘

We may set 7T(8) = O, since adding a constant to all event
times does not alter the program. With this normalization, it
follows from (10.5) that all T(x) are nonnegative, since the
Jjob times are nonnegative by (10.8), and since each node is
contained in some directed chain from s to t.

Iet us examine the dual of the project cost program. If
we assign nonnegative multipliers f£(x,7), Vv, g(x,¥), h(x,y)
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to the constraints (10.5), (10.6), (10.7), (10.8) respectively,
the dual of the program, for fixed A and <(8) = O, has

constraints

(10.10) £(x,y) + g(x,y) — h(x,y) = c(x,y)
0, x & 8,t,

(10.11) ¥ [£(x,y) - £(y,x)] =
y -y X = t,

subject to which

(10.12) Av +nyb(x.v) g(x,y) - ¥ a(x,y) h(x,y)

i to be minimized. Here, we repeat, all variables are non—
negative. Equalities appear in the constraints since variables
of the primal program are not explicitly restricted in sign.

It follows immediately that at least one of g(x,¥), h(x,y)
can be taken zero in an optimal dual solution, and hence we

may assume
(10.13) g(x,y) = max [0, e(x,y) - £(x,¥)],
(10.1%) n(x,y) = max [0, £(x,y) = c(x,¥)].

Thus the dual problem becomes: find nonnegative numbers
£(x,y), one for each arc of the project network, and a non—
negative number ¥, that satisfy the flow equations (10.11)
and minimize the nonlinear function

ot



(10.15) AV + xZ b(x,y) max [0,6(x,5) — £(x,¥)]
,y

- ¥ a(x,y) max [0,£(x,¥) - e(x,y)].
X,y

The key observation at this point is that a function of
£ of the form

(10.16) b max (0, o=f) — a max (0, f—c)

(sketched in Pig. 10.3) is convex, and of course, piecewise

linear.

?\
b(c-f)
%
(c :;)\;
-a(f—c)
Pig. 10.3

The convexity of (10.16) follows from the assumption a { vb.
Thus, even though (10.15) 1is nonlinear, 1t is the next best
thing (for minimizing), namely a sum of plecewise linear,
convex functions of the individual variables. As is well

known in linear programming, such & function can be dealt with

o
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by linear methods [ ].

.The idea 1is simply this. Replace each variable by a
sum of bounded nonnegative variables, where each variable in
the sum corresponds to one of the pieces of the eost function
for the original variable. Make up a new, linear cost function
by assigning each of the new variables a cost coefficient
equal to the slope of its linear piece of the original cost
form. Thus, for example, if the original cost function for the
nonnegative variable x of the program has breakpoints at
o< by < by e < b, one makes the replacement

X =X, +Xy+ oo +X ., vhere 0 xy (b, 0<x, {by =Dy, e,

0{x (b —=b 45, 0{x ;™ —Db =0c. Since the costs
of the new variables are monotone increasing, it follows that
in a minimizing selution, if some x, > 0, then all preceding

xJ are at thei: upper bounds. Hence the replacement is
legitimate.



Here one replaces each f(x,y) by a sum of two nonnegative

variables, say

(10.17) £(x,y) = £(x,y;1) + £(x,y;2),

the new variables being subject to the capacity constraints
(10.18) £(x,y;1) £ e(x,5),

(10.19) £(x,y;2) £ oo.

Then f£(x,y;l) has coefficient -d(x,y), f(x,y;2) has
coefficient —a(x,y) 4in the new minimizing form. Thus, if we
define

e(x,y), k=1,

m, k=2,

(10.20) c(x,y;k) = {

(b(x:y)o k=1,

(10.21) a(x,y;k) = ia(x 2 -

the dual program has constraints

0, x ¢ s8,t,
(10.?2) ,gk[f(x,y;k) - £(y,x;k)] = ) xet

(10.23) 0 { r(x,y3k) £ e(x,y;:k),

and minimizing form

(10.2%) aw - b a(x,yik) £(x,y3k).
x,¥,k
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This program has the following flow interpretation. First
enlarge the project network by doubling the number of arcs:
sorresponding to each arc (x,y) of the project network there
are now two arecs (x,y;l) and (x,y;2) from x to y. Each
are (x,y;k) of the new network has an assigned capacity
c(x,y:;k). The problem is to construct a flow from 8 to ¢t
of value v in the new network that minimizes (10.2%).

Except for the details that minimization has replaced
maximization in (10.24), and pairs of arcs join nodes, the
problem is now in familiar form. The second of these minor
differences eould be eliminated, if desir&d. by inserting an
additional node in the "middle" of each arc. However, this
greatly increases the number of nodes and arcs needlessly. A
better way to handle multiple arcs Joining nodes is simply
to augment the information contained in the labels assigned
to nodes during the labeling process to include knowledge of
which arc produced the label. This we do in the algorithm



do>

outlined below, which is also designed to minimize (10.24).
This algorithm solves the problem for all A and thus generates
the complete project cost curve. One other slight variation
that deserves preliminary mention is that, before performing
the usual labeling process, a check 1s made (using a labeling
process) to see whether "infinite breakthrough" 1s possible,
i.e. whether there is 2 chiin of admissible arcs from 8 to ¢t
each of which has infinite capacity. PFor the existence of such
a chain means that further decrease in A would make the
constraints (10.5) —(10.8) infeasible, and this signals
termination of the eomputation.

We use the notation T(x) for node numbers in the
algorithm, instead of our usual w(x), because these node
numbers do indeed have the interpretation of event times in
the original program. The algorithm begins with the zero flow
and an assignment of node numbers produced by finding a chain
of maximal b-length from s to t. Thus T(s) = 0 and «t)
equals the length of this chain. Then A = 1(t) 4s the
largest A of interest, since the project can be completed
in A ¢time units even if all job times are at their upper
bounds. The node numbers partition the arcs into admissible
and inadmissible classes in the usual way, and the labeling
process (modified as mentioned above) is then performed on
admissible arcs. Following nonbreakthrough, the node numbers
(event times) are changed by subtracting a positive integer
from those corresponding to unlabeled nodes. This produces a
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smaller value of ), namely the new <(t), and consequently
another point on the project cost curve P(2A). Moreover, optimal
job times <(x,y) eorresponding to A = t(t) are given simply
by defining

(10.25) ®(x,y) = min [b(x,y), ®(y) — «(x)].

We shall discuss these assertions in more detail following the
algorithm statement.

That the project network contains no directed cycles
comes into play in starting the algorithm for the dual flow
problem, since this means that the method of section 5 can be
used to find an initial assignment of node numbers. Indeed,
were it not for the absence of directed cycles, the constraints
(10.5) = (10.8) would be infeasible in general, as is easily
seen by summing (10.5) around a directed eycle. This is also
reflected in the dual problem, as the form (10.2%) would be
unbounded on its constraint set if the project network con—
tained a directed cycle. For an infinite amount of flow could
be sent around this cycle without changing v, so that (10.2%)
would, 4in general, be negatively infinite.

Optimality properties for the program (10.22) — (10.24)

are
(10.26) w(8) = 0, T(t) = A,
(10.27) a(x,y;k) + t(x) - ¥(y) < 0 = £(x,y;k) = 0,

(10.28) a(x,y;k) + t(x) - (y) > 0 = £(x,¥;k) = e(x,¥;k).



Here (10.27) and (10.28) are just the reverse of (3.19) and
(3.20). a8 is to be expected. The algorithm below produces
successive flows and node numbers satisfying these properties

for decreasing values of .

To shorten the notation, we set
(10.29) a(x,y;k) = a(x,y;k) + w(x) - «(y).

Arcs for which a(x,y;k) = 0 are admissible.

Start (Finding a chain of maximal b—length). Use the
shortest chain algorithm of section 5, where each arc (x,¥y)
of the project network 1s assigned the length -b(x,y). At
the conclusion of this routine, (negative) node numbers w(x)
will have been generated, with w¥(s) = 0. Set 1(x) = —w(x).
Take all f£(x,y;k) = 0. (The properties (10.26) — (10.28)
now hold for A = t(t).)

Iterative Procedure. Enter with an integral flow f£(x,y;k)

and node integers <T(x) satisfying (10.25)- (10.27) for some
A. (During the iterative procedure, a label assigned to node

y will be of the form [x, ki. e(y)]. Here x 4s a node, xt
indicates that the arc (x,y;k) was used to label y from X,
X~ that the arc (y,x;k) was used to label y from x, and
€(y) 4ndicates the largest flow change along the path from

8 to y.)

First labeling. Start by labeling s with [—,—¢(s) = @].
The only labeling rule is: node y can be labeled from (labeled)

node x if (x,y;2) 4is admissible; y then receives the label



[x,2+,e(y) - w]. If breakthrough, terminate . If nonbreak—
through, go on to the second labeling.

Second labeling. Nodes labeled above retain thelr labels,

and the labeling process continues as follows. All nodes revert
to the unscanned state. When scanning a labeled node x, the
labeling rules are: y ocan be labeled from x if elther

(2) (x,y;k) 1s admissible and f£(x,y;k) < o(x,¥;k),
(b) (y,x3;k) 1s admissible and f(y,x;k) > O.

In case {a), y receives the label [x,k*,e(y)] where

e(y) = min [e(x), e(x,y3k) — £(x,¥;k)]; 4n case (b), ¥

receives the label [x,k ,e(y)], where e(y) = min [e(x), £(y,x3k)].
If brealthrough, change the flow by adding and subtracting e t)
along the path from s to t picked out by the labels. Ir
nonbreakthrough, single out the following subsets of arcs:

72 -{(x,y;k) | x labeled, y unlabeled, a(x,y;k) < 0} ,
g -x (x,y;k) | x unlabeled, y labeled, a(x,yik) > O} ’
and define

“1 = min [ - :(xoYﬂC)]o
2y

62 = '&i: [ &x,3::0],

8 = min (51.52).
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Change the node numbers +(x) by subtracting 8 from all
T(x) oorresponding to unlabeled x. Discard the old labels
and repeat. ’

That the algorithm produces successive flows and node
mmbers satisfying the optimality properties (10.26), (10.27),
(10.28) 1s readily checked, just as in the minimal cost flow
routine of section 3. It is also easy to see that termination
occurs, that is, at some atage, the first labeling results in
(infinite) breakthrough. For suppose that the algorithm
fails to terminate, so that an infinite sequence of finite
breakthroughs and nonbreakthroughs occurs. The number of
breakthroughs in this sequence is finite. Por otherwise, flows
having arbitrarily large values v would be produced. But such
a flow sust eontain a chain flow along admissible arcs corresponding
to k = 2 (the infinite capacity arcs). Hence at some stage
there 18 a chain from 8 to t of admissible ares eorresponding to
k =2, and thus the first labeling would produce breakthrough.
This leaves only the possibility that infinitely many successive
nonbreakthroughs occur. This possibility is eliminated, Just
as in section 3, by the fact that at least one more node can
always be labeled following nonbreakthrough.

It may also be checked that the sets Czlﬁle that define
the node number change & cannot both be empty. (In faet,<,
cannot be empty.) For if both 621 and 4, are empty, the flow
at that stage 1s maximal, hence has infinite value. But this
is absurd, as termination would have occurred. Thus 8 1s a

positive integer.
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As was remarked earlier, each new set of event times
7(x) yields a new point on the project cost curve by defining
7(x,y) as in (10.25) and ecaleculating

P(2) = P[x(y)] = ny [k(x,¥y) = c(x,y) <(x,¥)].

We now verify that (10.25) does define optimal job times
corresponding to A = T(t). To this end, we go back to the
original pair of dual programs (10.%) — (10.8) and (10.10) -
(10.12), using also (10.13), (10.14) to define g and h, and
(10.17) to define f£. It suffices to show that

(10.30) t(x,y) + 7(x) — v(y) <0 =) £(x,y) = O,
(10.31) t(x,y) < v(x,y) = > g(x,y) =0,
(10.32) 1(x,y) > a(x,y) = > h(x,y) =0,

since (with T(s) = 0, T(t) = A) these are optimality properties
for primal and dual. If the hypothesis of (10.30) holds, then
+{x,y) = b(x,y), hence b(x,y) + 1(x) — +(y) { 0. Consequently
a(x,y) + ®{x) = f(y) < 0 also. It then follows from (10.27)
that f£(x,y3;k) = 0, k = 1 and 2, hence f(x,y) = £(x,y;1)

+ £(x,y3;2) = 0, verifying (10.30). Suppose next that

7(x,y) < v(x,y). Then 1(x,y) = 1(y) — *(x) < b(x,y), hence

by (10.28), f£(x,y;1) = e(x,y). Then f£(x,y) 2 ¢(x,y), hence
g(x,y) = max [0, e(x,y) — £(x,y)]= 0, proving (10.31). Finally,
assume «<(x,y) > a(x,y). If «(x,y) = «(y) — ¥(x), then
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a(x,y) + 7(x) = *(y) < 0, hence by (10.27), f(x,y;2) = O.
Consequently f(x,y) £ ¢(x,y), so that h(x,y) =

mex [0,f(x,y) — o(x,y)] = 0. If, on the other hand, <(x,y)

= b(x,y) { *(y) — *(x), then a(x,y) < *(y) — *(x), and again

we deduce h(x,y) = O. This completes the proof that =(x,y) '
defined by (10.25), together with the event times T(x), solve

the original project cost progran.

We show next that P(A) 4s linear between successive
values of A = t(t) generated by the algorithm. We in fact
show somewhat more — namely, how to pick out the breakpoints
of the convex, piecewise linear P(A). Not every value of
7(t) 41s necessarily a breakpoint.

Suppose that A, > A, are two successive A's, and
let A satisfy )‘1 2 A 2 7\2. let £ be the flow that produced
the node number change yielding xe from 11. and suppose f
has value v. Since f minimizes (10.2%) for A = 2,, it
follows that

(10.33) P(A)) =K~ (A,v - x;y‘k a(x,y;k.) £(x,y;k)).

Here K 4s the constant ¥ [k(x,y) - b(x,y) e(x,y)]. But
X,y

£ also minimizes (10.24) for any A 4in the interval

M 2222, (Tnis is analogous to Corollary 3.4.) Hence

(10.33) P(A) =K== (Av =~ T  a(x,y;k) £(x,¥;k)),
X,¥,k
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and consequently
(10.35) P(A) = P(A)) = (Ay =)V, A 2A 2%

Thus P(A) 1z linear between successive values of 1«t).

Now suppose Ay > A, > x3 are three successive values of
«t) generated in the computation, and let v be as defined
above. Suppose also that v' 48 the value of the flow that
produced the nonbpeakthrough yielding x}. Then

P(2,) = P(2y) = (A - 2\,)v,
9(13) - P(2,) = (2, -x3)v'.

Consequently A, 4s a breakpoint of P(A) if and only if
v { v!', that 18, if and only 4if there 1is an intervening
breakthrough between the two nonbreakthroughs that yleld 12
and XB.

For example, if a problem computation results in the
sequence of breakthroughs and nonbreakthroughs (indicated by

B and N)

B® BB N®BNN® B,

then the circled nonbreakthroughs suffice to define P(A). %
At the conclusion of the computation, a chain of

admissible links corresponding to k = 2 has been located.

Summing the equalities a(x,y) + *(x) — *(y) along this chain



shows that A = 7(t) 4is equal to the a-length of this chain.
Consequently the project cannot be completed in any smaller
time interval.

The method of this section can also be used to compute
project cost curves in case the given job costs are assumed
pilecewise linear and convex between crash and normal completion
times a(x,y) and b(x,y). This merely introduces more arcs
from x to y into the flow network, in fact, one more arc
for each additional breakpoint of the function giving the
gost of job (x,¥y).

We conclude this section with a table summarizing the

solution of the following numerical example:

Fig. 10.5
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(1) O 0 0 o 0 O O -
t(2) 3 3 3 3 2 2 1 -
T(3) 5 & 3 3 2 2 2 -
w(4)er | 12 0 9 8 7 &4 3 -
«(1,2) {3 3 3 3 2 2 1 =
«(1,3) | & &% 3 3 2 2 2 -
' %(2,3) |2 1 o o 0o ©0 1 -
- x(2,8) |5 5 5 5 5 2 2 -
' x(s,8) 16 6 6 5 5 2 1 - .
" f(1,2) o 1 1 2 3 3 3
- f(1,3) o o 1 1 1 1 2 e
2,3 o 1 1 2 2 2 1 1
r2,4) o o o 0 1 1 2 o
£(3,4) 1o 1 2 3 3 3 3 o
v 0O 1 2 3 & 4 5 o |
P(A)x ] o 1 3 6 10 22 27 - |
Table 10.1

The behavior of the optimal job times «(2,3) as A varles
from 11 to 3 is interesting in this example. For A = &, it
i1s optimal to take <T(2,3) at its lower bound, but further
decrease in )\ implies an increase in t(2,3) away from its
lower bound. This kind of behavior may go against one's in—
tuition at first, but a little reflection shows that it is mnot,
after all, surprising.



11. Constructing minimal ecost circulations [ ]. The

method presented here for computing optimal network flows is
more general than those described earlier in at least three
ways: (a) lower bounds as well as capacities are assumed for
each arc flow, and are dealt with directly; (b) the cost
coefficient for an arc is arbitrary in sign; (¢) the method can
be initiated with any circulation, feasidble or not, and any set
of node numbers. (It is convenient, and no loss of generality,
to describe the computation in terms of circulations, rather
than flows from sources to sinks.) The freedom to begin with
any circulation and node numbers, instead of starting with
particular ones that satisfy certain optimality properties, as
has been the case before, is perhaps the most important
practical feature of the method. For example, in actual
applications, one is often interested in seeing what changes
will ocecur in an optimal solution when some of the given data
are altered. This method is tailored for such an examination,
since the old optimal primal and dual solutions ocan be used to
start the new problem, thereby cutting coﬁputation time greatly.

Perhaps the most interesting theoretical feature of the
method ;s that, loosely speaking, the status of no arc of the
network is worsened at any step of the computation. We shall
make this statement more precise later on.

We take the problem in circulation form. That is, we

want to construct £ ¢that satisfies

113
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(11.1) £(x,N) - £(N,x) =0, allxceN,
(11.2) $(x,5) £ £(x,y) £ e(x,y) all (x,y) € &

and minimizes the linear cost function

(11.3) ¥ a(x,y) £(x,y).
a

(Here 0  #(x,y) € o(x,y), and as usual, we assume integral

data.) ‘Thus, if it is desired to construct a feasible flow

from s to t of given value v that minimizes (11.3), one

can merely add a return flow arc (t,s) with £(t,s8) = c(t,s) = v,

a(t,s) = 0, to get the problem in circulation form. Or if 1t

45 desired to construct a maximal feasible flow from 8 to t

that minimizes (11.3), one can take £(t,s) =0, c¢(t,s) = o,

a(t,s) = —o0. '
Of course feasible circulations may not exist. In this

case the algorithm terminates with the loscation of a subset

X of nodes for which the condition (11.3.3) of Theorem II.3.1l

is violated.

Por given node numbers v, we set

(11.%) a(x,y) = a(x,y) + v(x) - =(y).

Then, for given ¥ and circulation f, an arc (x,y) is in

Just one of the following states:



(a) &(x,y) >0, f£(x,5) = 8(x,¥),
() =(x,y) =0, 4(x,y) £ f(x,y) £ o(x,¥),
(v) T(x,y) <0, £(x,3) = elx,y),
(a,) &(x,¥5) >0, £(x,3) < #(x,5),
(8,) &(x,y) =0, £(x,3) < #(x,y),
(w) a(x,y) <0, £(x,3) < elx,3),
(s,) a(x,y) >0, f£(x,y) > 4(x,y),
(B,) &(x,y) =0, f£(x,3) > e(x,y),

(v,) 2(x,¥y) <0, £(x,5) > e(x,¥).

We say that an arc is in kilter if it is in one of the states
a,B,Y; otherwise the arc is out of kilter. Thus to solve the
problem, it suffices to get all arcs in kilter, since optimality

properties are
(11.5) a(x,y) < 0 = r(x,y) = o(x,5),

(11.6) a(x,y) > 0 = r(x,y) = 4(x,5).

With each state that an arc (x,y) o¢an be in, we associate
a nonnegative number, called the kilter number of the arc in
the given state. An in—kilter arc has kilter number O; the

arc kilter numbers corresponding to out—of-kilter states are

112



1isted below:
(aq) or (8,): &(x,3) - £(x,y) ,

(7y):  &(=,5)[2(x,5) = e(x,¥)],

(ap):  &(x,y)[f(x,y) - 8(x,¥)],

(Bp) or (v;): £(x,3) - e(x,y).

Thus out~of-kilter arcs have ﬁositive kilter numbers. The
kilter numbers for states ay, 51' ﬁz, Y, measure infeasibility
for the arc flow f(x,y), while the kilter numbers for states
Yye 9o are,in a sense, a measure of the degree to which the
optimality properties (11.5), (11.6) fail to be satisfied.

The algorithm concentrates on a particular out—of-kilter
arc and attempts to put it in kilter. It does this in such a
way that all in—kilter arcs stay in kilter, whereas the kilter
number for any out—of-kilter arc either decreases or stays the
same. Thus all arc kilter numbers are monotone nonincreasing
throughout the computation. (This is the interesting feature
of the method that was mentioned previousiy.) However, steps
can ocour that change no kilter number, and this complicates
the proof of termination somewhat. But if the process begins
with a feasible circulation, the monotone property is stronger:
at least one arc kilter number decreases at each step, thus
providing a simplér proof of finiteness in this case.

A basic notion underlying the method is to utilize the
labeling process of II.3, modified appropriately, for increasing
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or decreasing a particular arc flow in a circulation. The
appropriate modification this time will not be in terms of the
notion of "admissibility" for an arc, which has been used
previously, but will rather be more general.

We now state the algorithm.

The out—of-kilter algorithm.. Enter with any integral circulation

£ and any set of node integers v¥. Next locate an out—of-iilter

are (s,t) and go on to the appropriate case below.

(01) a(s,t) > o, £(s,t) € £(s,t). Start a labeling process
at t, trying to reach s, first assigning t the label
[s*, e(t) = £(s,t) — £(s,t)]. The labeling rules are:

(11.7) If x 4s labeled [ii, e(x)], y is unlabeled, and
it (x,y) 4is an arc such that either
(a) &(x,y) > 0, £(x,y) < 4(x,3),
(v) &(x,y) 0, £(x,y) € e(x,y),
then y vreceives the labei [x*, e(y)], where

¢(y) = min [e(x), #(x,y) — £(x,y)] in case (a),
€(y) = min [e(x): e(x,y) - f(xtY)]' in case (b).

(11.8) If x 4s labeled [z:. e(x)], y 4s unlabeled, and if
(y,x) 18 an arc such that either
(a) :(Y:x) 2 0, f(Ynx) > ‘(}'ox)o
(v) a(y,x) <0, £(y,x) > e(y,x),

then y receives the label [x~, €(y)], where

I
An IBM 704 code based on this algorithm has been prepared
by J. D. Little and is currently in use at The RAND Corporation.

11,
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€(y) = min [e(x): £(y,x) ~ ‘(Y)x)] in case (a),
€(y) = min [e(x), £(y,x) - e(y,x)] 4n case (v).

If breakthrough occurs (i.e. 8 receives a2 label), so that
a path from t to s has been found, change the circulation
f by adding e€(s) to the flow in forward arcs of this path,
subtracting €(s) from the flow in reverse arcs, and finally
adding e€(s) to f(s,t). If nonbreakthrough, let X and X
denote labeled and unlabeled sets of nodes, and define two

subsets of arcs:
(11.9) al = {(X:Y) | xeX, ye X, a(x,y) > 0, £(x,y) S c(x:Y)}a

(11.10) &y = {(5,x) | x € X, y € X, (y,x) <0, £(3,2) 2 l(y.x)}-

Then let
(11.11) 8, = min [&(x,y)],
“
(11.12) 6, = min [-&(y,x)],
%
(11.13) 8 =min (8;,8;).

(Here 61 is a positive integer or o according as Czi is
nonempty or empty.) Change the node integers by adding & to
all w(x) for x ¢ X.

(51) or (71)' E('nt) =0, f(‘ot) < 8(s,t) or a(s,t) < O, '
r(s,t)  e(s,t). Same as (cl), except ¢€(t) = c(s,t) — £(s,t).
(ay) or (By). &(s,t) >0, £(s,t) > #(s,t), or &(s,t) = O,
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£(s,t) > c(s,t). Here the labeling process starts at s, 1in

an attempt to reach t. Node s 1s assigned the label

[tT, e(s) = £(8,t) — 8(s,t)]. The labeling rules are (11.7)

and (11.8) again. If breakthrough, change the circulation by
adding and subtracting e¢(t) to arc flows along the path from

8 to t; then subtract e€(t) from ¢f£(s,t). If nonbreakthrough,

change the node numbers as above.

(v,) &(s,t) <0, £(s,t) D> o(s,t). Same as (ay) or (B,),
except €(s) = £(s,t) — ¢(s,t).

The labdbeling process is repeated for the arc (s,t) until
either (s,t) 18 in kilter, or until a nonbreakthrough ocecurs
for which 8 = 0c0. In the latter case, stop. (There is no
feasible circulation.) 1In the former case, locate another
out—of-kilter arc and eontinue.

We show that the out—of-kilter algorithm terminates, and
that all arc kilter numbers are monotone nonincreasing through—
out the computation. |

Suppose that arc (s,t) 4is out of kilter, say in state
a,. The origin for labeling is t, the terminal s. The arc
(s,t) cannot be used to label s directlf since neither
(11.8a) nor (11.8b) is applicable. Consequently, if break-
through occurs, the resulting path from t to s, together
with the arc (s,t), 1s a eycle. Then the flow changes that
are made on arcs of this cycle again yleld a oirculation.
Moreover, the labeling rules have been selected in such a way

that kilter numbers for arcs of this cycle do not increase, and



at least one, namely, for arc st, decreases by a positive
integer. Kilter numbers for arcs not in the cycle of course
don't change.

Similar remarks apply if (s,t) 4s in one of the other
out—-of-kilter states.

We summarize the possible effects of a breakthrough on an
arc (x,y) in the diagram below, which shows the state
transitions that may occur following breakthrough. If a tran—
sition 1s possible, the number recorded beside the corresponding
arrow represents the change in kilter number. (Here ¢ 18 the

flow change.)

0]
@ -Q¢ @= -€ O

o
\

O or -¢ 0] O or -¢
By et (ol (g
O or —¢ O or Qe

0 -
@ -€ Q 13 m

2 . ot

[}
=

Breakthrough diagram
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Verification of the breakthrough diagram is straightforward.
For example, suppose arc (x,y) is in state a5, with a(x,y) > o,
£(x,y) > #(x,y), and kilter number a(x,y) [f(x,y) - 8(x,¥)] > O.
If (x,y) 1s not an arc of the cycle of flow changes, then
(x,y) remains in state a, with zero change in kilter number.
If the flow in arc (x,y) has changed as a result of the break—
through, then either (x,y) 4s the arc (s,t) or, by the
labeling rules, (x,y) 4s & reverse arc of the path from origin
to terminal. Specifically, ¢t was labeled from y using
(11.8a). In either case, f(x,y) decreases by the positlve
integer € { f(x,y) — #(x,y), the new state for (x,y) 1is
a, or a, and hence the kilter number for (x,y) has
decreased by € a(x,y) > O. The rest of the diagram may be
verified similarly.

The state transitions and changes in kilter number that
may occur following a nonbreakthrough with 8 { co are in—

dicated in the following diagram.



Oor -8(f-1)

- f
-a (f-¢)

f-c
-a(f-1)

Nonbreakthrough diagrom

Again we omit a detalled verification, but consider, for
example, an arc (x,y) in state v,» 80 that a(x,y) € 0,
£(x,y) < ¢(x,y), having kilter number a(x,y) [f(x,y) - e(x,y)] > O
before the node number change is made. It both x and y are
din X or both in X, then a(x,y) remains the same after the
node number change, and consequently (x,y) stays in state 7
with no change in kilter number. We cannot have x in X, y in
¥ (labeling rule (11.7b)), and hence the remaining possibility
is x1n X, y in X. Then =a(x,y) 48 increased by o ) O.
Consequently the arc (x,y) either remains in state 7,,

(1 8 < — &(x,y)) goes into state B (if 6 = — a(x,y) and

A
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£(x,y) 2 8(x,5), dinto state B, (if 6 = - a(x,y) and
£(x,y) < #(x,3), or into state a, (if & > —a(x,y) and
r(x,y) € #(x,y)), and the corresponding changes in kilter

mmber are respectively
6 [f(x,y) = e(x,y)] <o,
8 [f(x,y) - e(x,5)] <O,
$(x,y) - £(x,y) + o[f(x,y) = e(x,3)] O,
$(x,y) - £(x,3) - &(x,y) [f(x,y) = e(x,¥)] L O.

(The remaining logical possibility 8 D> — &(x,y), r(x,y) 2
$(x,y) cannot occur, since if f£(x,y) > £(x,y), then (x,y)
is in C?a defined by (11.10) and hence B8 ﬁ_-'E(loy)-)

It follows from the breakthrough and nonbreakthrough
diagrams that kilter numbers are monotone nonincreasing through—
out the computation. Moreover, if breakthrough occurs, at
least one arc kilter number decreases by a positive integer.
Thus to establish termination, it suffices to show that an
infinite sequence of consecutive nonbreakthroughs, each with
6 { @, 18 impossible. To show this, let us suppose that a
labeling resulting in nonbreakthrough with & { @ has
occurred, and let X, X denote labeled and unlabeled sets of
nodes. After changing the node numbers, the new function

a'(x,y) 1is given by
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a(x,y) -8 forxin X, y in X,
(11.1%) a'(x,y) =(a(x,y) +8 forxin ¥, y in X,
a(x,y) otherwise.

If the arc (8,t) 4s still out of kilter, then the origin is
the same for the next labeling, and it follows from (11.14)
and the labeling rules that every node of X will again be
labeled. Thus if the new labeling results in nonbreakthrough
with labeled set X', we have X CE:X'. let &, aé denote

the new sets defined in terms of X', &', and f by (11.9),
(11.10), and suppose X = X'. Then from (11.14) we have

ai C 4, @y < 4y, and at least one of these inclusions is
proper by (11.11), (11.12), (11.13). Hence the new labeling
either assigns a ladbel to at least one more node, or failing
this, an arc is removed from one of the sets a, or 4y.

It follows that, after finitely many nonbreakthroughs with 8 { o,
we either get the arc (&,t) 4n kilter, obtain a breakthrough,
or obtain a nonbreakthrough with ©6 = oo.

If a nonbreakthrough with 8 = o0 ococurs, there is no
feasible circulation. For if 8 = o, then from the definitions
of d4,,Q, and the labeling rules, we have £(x,y) 2 e(x,y),
£(y,x) { #(y,x) for x € X, y € X. Moreover, for the arc
(s,t), either t 1z 4in X, 8 in X with ¢£(s,t) < £(s,t),
or 8 is5in X, t in X with fr(s,t) ) c(s,t). (This s
immediate for cases ey, Bl. ﬂa, 7> of the algorithm, and

follows from (11.9) and the assumption & = @ for case a,,



from (11.10) and the assumption 8 = ® for case 71.) Hence,
suming the conservation equations (11.1) over x 1in X, we
obtain in all cases

0 = £(X,X) - £(X,X) D> e(x,X)- #(X,X).

But this violates the feasibility condition of Theorem II.3.1l.
Thus 8 = o0 implies there is no feasible circulation.

Theorem 11.1. The out—of-kilter algorithm either solves
the problem (11.1), (11.2), (11.3) in finitely many applications

of the labeling process or terminates with the conclusion that

no feasible circulation exists. All arc kilter numbers are

monotone nonincreasing through the computation. In addition, 1if

the algorithm 1s initiated with a feasible circulation, at least

one arc kilter number decreases with each labeling.

The only part of Theorem ll.1 that remains to be checked
is the last assertion. If the computation begins with a
feasible circulation, the states @y ﬂl' Bos 72 are empty
to begin with, and consequently remaln empty through the
computation. Hence, at each nonbreakthrough (as well as each
breakthrough), the kilter number for at least one arc, namely
(s,t), decreases by a positive integer.

It is worthwhile pointing out how the out-of-kilter
algorithm generalizes the method of sectinn 3 for constructing
a maximal flow from source 8 to sink t that minimizes cost

over all maximal flows. Here we suppose f =0, a » O, as
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in section 3. Now add the arc (t,s) to the network with
s(t,8) = 0, e(t,s) large, and a(t,s) negatively large. If
we start with the zero circulation and all node numbers zero,

as in section 3, then the only out—of—kilter arc is (t,s)

(1t 1s in state 71) and hence it remains the only out—of-kilter
arc throughout the computation. Then the origin for the
labeling rules, flow change, and node number change &all

reduce to those of section 3.
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Chapter IV
MULTI-TERMINAL MAXIMAL FLOWS

Introduction. In this short, concluding chapter we return

to the topic discussed in Chapter I, but here a different point
of view will predominate. Instead of focusing on the value of
a maximal flow from one specified node to another, the primary
concern will be with certain problems that arise when attention
is shifted to all pairs of nodes. For example, how does one
determine maximal flow values between all pairs of nodes in a
network with capacity constraints on arcs — does this necessitate
solving all pairs of flow problems, or will something simpler
suffice? Or a more basic question: what are necessary and
sufficient conditions in order that a given set of numbers
represent maximal flow values between pairs of nodes in some
network? 1In addition to these two questions, one other problem
will be discussed: that of synthesizing a network that meets
specified lower bounds on all maximal flow values, and at
minimal total network capacity. These questions have been
considered very recently by Mayeda [ 6], Chien [ 1], and
Gomory and Hu [ 2 ]. Our exposition closel& follows that of
Gomory and Hu, who have given concise and elegant answers to
all the questions posed above.

Throughout this chapter we shall deal only with undirected
networks, for which the multi-terminal theory assumes a particularly
simple and appealing form. For results on the directed case,

we refer the interested reader to [ 4 ].



1. Forests, Trees, and Spanning Subtrees. In thls section

we introduce and discuss briefly a few elementary notlons
concerning undirected graphs that have not been required here-—
tofore. The first of these is that of a tree. A tree is
simply a connected graph G = [N;2] that contains no cycles.
Thus a tree has the property that there is a unique chain or
path joining each pair of nodes, since the existence of two or
more paths between the same pair of nodes implies the exlstence
of a cycle in the graph. More generally, a graph, connected or
not, without cycles, is called a forest; each connected pilece
of a forest is consequently a tree, when considered as a graph
in its own right. It 1s easy to show, for example by 1nduction
on the number of nodes, that a tree on n nodes has preclsely
n — 1 arcs. Indeed, any two of the three conditions: (a) G is
connected, (b) G has no cycles, (c¢) |z| = |N| — 1, implies
the third and characterizes G as a tree.

Given a connected graph G on n nodes, one can delete
arcs from G until a tree remains. Such a tree is called a

spanning subtree of G. For example, a spanning subtree of the

graph of Fig. 1.1 is shown in heavy arcs. If a graph G and

" a spanning subtree T of G are

Fig. 1.1



specified, we refer to the arcs of T as "in-tree" arcs, the
others as "out—of—tree" arcs. Observe that if an out—of-tree
arc is added to a spanning subtree, the resulting graph has

Just one cycle, consisting of the out—of-tree arc and the unique
chain of in-tree arcs Joining its end nodes. If any arc of this
cycle is now deleted, the new graph is again a spanning subtree.

Suppose that each arc (x,y) of a connected graph G

has associated with it a real number a(x,y), which we might
think of for the moment as the "length" of (x,y). Among all
the spanning subtrees of G there is then a "longest" one,
that i1s, one that maximizes the sum of the numbers a(x,y)
associated with arcs of the subtree. In studying multi-terminal
network flows, maximal spanning subtrees turn out to be of
considerable use. We shall therefore state and prove & maximality
criterion for a spanning subtree, and then describe one of &
number of remarkably simple algorithms that have been devised
for constructing maximal spanning sﬁbtrees. We begin by noting
an obvious necessary condition in order that a spanning subtree
be maximal. Thus, suppose T 18 a maxima} spanning subtree

of G, and let Xys Xos evesXp be the chain of in-T arcs
~ Joining x, and x .. Here (x,, xk) is an out—of-T arc.

Then clearly

(1.1) a(xl,xk) < min [a(xl,xg), a(x2,x3), ...,a(xk_l,xk)],

for otherwise we could replace one of the in-T arcs of this

chain by (xl’xk) to obtain a longer spanning subtree of G.



On the other hand, if the condition (1.1) holds for each out-—
of-T arc, then the spanning subtree T 1s maximal. This 1s

not obvious, although it can be demonstrated in several ways.

We shall sketch a proof showing in fact, that 1if T1 and T2
are two spanning subtrees of G, and if each satisfiles the
assumption (1.1), then T, and T, are equal in length. This
will certainly establish sufficierncy. Given Tl and T2, we
divide all of their arcs into three classes: arcs that belong
to T, only (Tl—arcs), arcs that belong to T, only (Tg—arcs),
and arcs that belong to both T, and T, (Tl,Te—arcs). Suppose
that T, and T, are distinct and take any T,—erc, say (xl,xk),
then look at the chain of in-T, arcs (xl,xe), ""(xk—l’xk);
some of these, but not all, may be Tl,Tb—arcs. Thus there

are T,-arcs in this chain. By (1.1) applied to T, each of
these Tl—arcs has length at least a(xl,xk). We shall show
that at least one of them has length equal to a(xl,xk). For
suppose each of them had length greater than a(xl,xk). Then,
taking each of them in turn, its end nodes are Jjoined by a chain
of in-T, arcs not containing the arc (xl,xk), since T,
satisfies the hypothesis (1.1). It follows that T, contains

a cycle, a contradiction. Hence some one of the T,—arcs in

the chain of in-T, arcs Joining X, and x,, s8ay (xp,xp+1),
has length equal to a(xl,xk), as asserted. Now remove
(xp,xp+1) from T, and replace it by (xl,xk). This ylelds

& new spanning subtree Ti that has the same length as Tl

and has one more arc in common with T2. Moreover, the



hypothesis (1.1) is again satisfied for T!, as is readily
verified. Hence the argument can be repeated, obtalning a
succession of equal length trees Tl, T, ;, «ee, the last
of which is Té. This proves

Theorem 1.1. A necessary and sufficient condition that a

spanning subtree be maximal is that (1.1) hold for each

out—of-tree arc.

An analogous theorem holds for minimal spanning subtrees,
as can elther be seen directly or by replacing each a(x,y)
by its negative.

Kruskal [ 5] and Prim [ 7 ] have described several simple
and direct algorithms for constructing a maximal (or minimal)
spanning subtree of a given graph G. The validity of the
followiﬂg method, due to Kruskal, can be verified using Theorem
l1.1. Begin by selecting a longest arc of G; at each successive
stage, select (from all arcs not previously selected) a longest
arc that completes no cycle with previously selected arcs, 1i.e.
keep the subgraph of selected arcs a forest at each stage.
After n — 1 arcs have been selected, a longest spanning subtree
has been constructed. For example, the construction might lead
to the maximal spanning subtree indicated by heavy arcs in

Flg. 1.2.



2. Realization conditions. For a given undirected network

G with arc capacity function c¢, denote the maximal flow value
from one node x to another node y by v(x,y). Thus v 1s
symmetric: v(x,y) = v(y,x). We call v the flow value
function of G, or more briefly, the flow function. (It is

sometimes convenient in the sequel to put v(ix,x) = @, but
for the moment, we simply think of v(x,x) as undefined.) The
first question that comes up is that of determining condlitions
under which a given symmetric function v can be realized as
the flow function of some network. A first step in answering

- this question is provided by Lemma 2.1.

Lemma 2.1. If v 1s the flow function of a network, then

for all nodes x, y, 2,

(2.1) v(x,y) > min [v(x,2), v(z,y)].

Before proving Lemma 2.1, we note that condition (2.1),



a kind of "triangle" inequality, puts severe limitations on
the function v. For instance, applying (2.1) to each "side
of the triangle" shows that among the three functional values
appearing in (2.1), two must be equal and the third no smaller
than their common value. A further consequence of (2.1) is
that if the network has n nodes, then v c&n have at most
n — 1 numerically distinct functional values. We shall not
prove this assertion here, since it will be a by-—product of
the proof of Lemma 2.2 below.

Notice that taking v(x,x) = o© eliminates the necessity
of insisting that x, y, z be distinct in (2.1).

To prove Lemma (2.1), we use the max flow min cut theorem
to pick out a minimal cut (X,X) with x in X, y in X, and

v(x,y) = ¢(X,X). Now 2z 1s either in X or X. If z 1s in
X, then

v(z,y) < C(X,X) = V(X:Y):
and (2.1) holds. 1If, on the other hand, z is in X, then
v(x,z) < C(X,X) = V(x:y):

and again (2.1) holds.
We point out that the proof uses the strong half of the
max flow min cut theorem.

It follows inductively from (2.1) that

(2.2) v(xl,xk) > min [v(xl,xz),v(xz,x3), ""V(xk—l’xk)]'



Here XysXgy eoesXy is any sequence of nodes of the network.

The importance of conditions (2.1) is considerably enhanced
by the fact that, not only are they necessary for reallzabllity,
they are also sufficient.

Lemma 2.2. If the symmetric function Vv satisfies (2.1)

for all x, y, 2, there is an undirected network having flow

function v.

The discussion of section 1 can be brought into play in
proving Lemma 2.2. Assocliate with each unordered pair (x,y)
the number v(x,y) to obtain an undirected graph each of whose
arcs has a "length." Now let T be a maximal spanning subtree
of this graph. It follows from (1.1) and (2.2) that if
SERY ...,xk is the chain of in-tree arcs from Xy to xk,

then

(2.3) v(xl,xk) = min [v(xl,xz),v(xz,xB), ...,v(xk_d,xk)].

Hence, if each in-tree arc is now assigned the capacity
e(x,y) = v(x,y), while each out—of-tree arc is deleted from
the network, the flow network T has flow function v.

Thus if v 18 realizable, it is realizable by a tree.

We may summarize the discussion of this section in

Theorem 2.1. A symmetric function v 1s realizable as

the flow function of an undirected network if and only if v

satisfies (2.1). If v 1s realizable, it is realizable by a

tree.



3. Equivalent networks. We turn next to the problem

of analysis of a flow network: to determine the flow function
v in an efficient manner. We have just seen that v 1is
realizable by a tree and hence that v can take on at most

n -1 numerically different values, where n 1s the number
of nodes in the given network.

Suppose we call two n-node networks flow—equivalent, or

briefly, equivalent, if they have the same flow function v.
Thus every network is equivalent to a tree. Is there some way
of constructing an equivalent tree that is better than first
determining v explicitly by solving a large number of flow
problems and then constructing a v-maximal spanning tree?

Gomory and Hu have answered this question decidedly in the
affirmative. Their procedure involves the successive solution
of precisely n — 1 maximal flow problems; moreover, many of
these problems involve smaller networks than the original one.
Thus one could hardly ask for anything better.

To begin the discussion of this method, let us suppose that
a maximal flow problem has been solved with some node 8 as
source, another node t as sink, thereby iocating a minimal

cut (X,X) with s in X, t in X.

\O



T\
X // X
Fig. 3.1

Suppose that we wish to find v(x,y) where both x and y are
on the same side of the s,t minimal cut (X,X), say both x
and y are in X. We first show that, for this purpose, all
the nodes of X can be "condensed" into a single node to which
all the arcs of the minimal cut are attached (several arcs

Joining the same pair of nodes can be replaced by a single arc,

as in Pig. 3.2.) We call the network so obtained the condensed

network. (Another way of thinking df the condensed network is
to imagine arcs Jjoining all pairs of nodes of X with infinite

capacity.)
()

c,tcy

Fig. 3.2

10



Lemma 3.1. The maximal flow value v'(x,y) between two

ordinary nodes x and y of the condensed network 1s equal to

the maximal flow value v(x,y) 4in the original network.

Proof. Let (Y,Y) be a minimal cut separating x and y

in the original network and define sets

A=2XY, &=XT,
B =X, B=XV.

Here A 1is the complement of A in X, B 1is the complement

of Bin X. We may assume that x € A, y € A, 8 € A.

Case 1. t € B. Now

c(X,X) = c(A,B) + ¢(&,B) + c(A,B) + ¢(&,B),
c(Y,Y) = ¢(A,E) + c(A,B) + ¢(B,K) + ¢(B,B).

Since (Y,Y) is a minimal cut separating x and y, and since
(AUBUB,R) separates x and y, we have

(3.1) c(Y,Y) — c(AUBVE,R) = c(A,E) +_c(B,E) - ¢(X,B) < 0.

Since (X,X) is a minimal cut separating s and t, and since
(AJAUB,B) separates s and t, then

(3.2) e(X,X) — ¢(AUAUE,B) = c(A,B) + ¢(X,B) — ¢(B,B) < 0.

Adding (3.1) and (3.2) shows that c(A,B) < 0 and hence
c(A,B) = 0. It then follows from (3.1) and (3.2) that

11



c(B,B) — c(A,B) = 0 also. Hence (AUB.E,R) = (AX,R) 1s
also & minimal cut separating x and y.

Case 2. t € B. A similar proof shows that (A,AuX) 1s
a minimal cut separating x and y in this case.

In other words, there is always a minimal cut separating
x and y such that the set of nodes X 4is on one side of this
cut. Consequently, condensing X to a single node does not
affect the value of a maximal flow from x to y.

Lemma 3.1 plays a fundamental role in the Gomory-Hu
procedure for constructing an equivalent tree.

We now describe theilr construction.

Select two nodes arbitrarily and solve a maximal flow
problem between them. This locates a minimal cut (X,X),
which we represent symbolically by two nodes connected by an

arc of capacity v, = c(X,X), as in Fig. 3.3. 1In

v

——

Fig. 3.3.

one node are listed the individual nodes of X, in the other
those of X. Next choose two nodes in X, say, and solve the
resulting maximal flow problem in the X-condensed network.
The resulting minimal cut has capacity Vo and is represented
by an arc of this capacity connecting the two parts into which
X is divided by the cut, say X; and X,. The node X 1s
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attached to xl if it is in the same part of the cut as Xl,

to X, otherwise. (See Pig. 3.4.)

A 1 ’,/“‘ .
& % X
Fig. 3.4

This process is continued. At each stage of the constructlon,
some set Y, consisting of more than one node, is chosen from
the tree diagram at that stage. The set Y will have a certain
number of arcs attached to it in this tree. All of the sets
(nodes of the tree) that can be reached from Y by paths using
one of these arcs are condensed into a single node for the next
maximal flow problem. This 1s done for each arc attached to
Y 4in the tree. In the resulting network a maximal flow problem
is solved between two nodes of Y. The set Y is partitioned
into Y1 and Y2 by the minimal cut thus found; this 1s re-
presented in the new tree by an arc having capacity equal to the
cut capacity Joining Yl and Y2; the other nodes of the old
tree are attached to Yl if they are in the Yl part of the
cut, to Y2 otherwise. '

To illustrate the general step of the.construction, suppose
we have arrived at the tree diagram of Fig. 3.5, with Y to be
split. Removal of the arcs attached to Y leaves the connected

components
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Fig. 3.5

¥ X5 Xy, X3; Xy, » X5, Xg- Then in the original network, the
nodes of Xl are condensed, as are those of XQLJXB, and
Xu\)x5h1X6. Solving & maximal flow problem between two nodes
of Y 1n the condensed network might then lead to the new tree

shown in Pig. 3.6.
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The process is repeated until all the sets consist of one
node each. If the original network has n nodes, this point
is reached after n — 1 maximal flow problems have been solved,
since the final diagram is a tree on n nodes, each arc of
which has been created by solving a flow problem. The number

th arc of the final tree T 18 the capaclty

vy attached to the 1
of this arc.

It is not at all evident that the tree T constructed in
this manner is equivalent to the original network. That this
is the case follows from Lemma 3.2.

Iemma 3.2. The maximal flow value between any two nodes

of the original network is equal to

min (v, , V. , «ee, V, ),
11 12 1r

where 11, 12, vesy 1r are arcs of the unique path joining

the two nodes in the final tree T.

Proof. Consider two nodes x and y. We show first that
(3.3) vix,y) <min (vy 5, vy 5 eee, vy )
1 2 r
Here 11, 12, ooy 1r are arcs of the path Joining x and y
in T. To see the validity of (3.3), it suffices to observe
that the 1P arc or T represents a cut (X,X) 4in the original
network having capacity Vi and that the sets X,X are

determined from T as follows. Delete the ith

arc from T,
leaving a forest of two trees; then X consists of all the
nodes in one of these trees, X all the nodes of the other.

This implies that x and y 4n (3.3) are separated



16

by all the cuts corresponding to the arcs 11, 12, seey 1r’
and (3.3) follows. (That the final tree T does represent
cuts in the manner described above is immediate from the con-
struction, since each new tree produced in the construction
represents cuts in this way provided the old tree does.)

To establish the reverse inequality is more difficult.
This will be accomplished by showing that, at any stage of the
construction, if an arc of capacity v Joins nodes X and Y
in the tree, then there is an x in X and a y in Y such that
v(x,y) = v. This is certainly true at the first stage. We
prove that the property is maintained. Consider a node Y
about to be split, with X attached by an arc of capacity v.
By the induction hypothesis-there isan xin X and yinY
with v(x,y) = v. Let s and t be the two nodes of Y for
the next maximal flow problem. (We do not exclude the possibility
8=y or t=y in what follows.) The set Y then divides
into Yl and Y2 with 8 in Yl, t in Y2. We may assume that
X 1s attached to Y, (see Fig. 3.7.)

v
v. ®

v!

Fig 37
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Of course s and t provide the two nodes such that
v(s,t) = v' for the new arc. As to the o0ld arc of capacity
v, there are two cases to consider. If y is in Yl’ then x
and y provide the two nodes. The case in which y 18 in Y2
is a 1ittle more troublesome. Here we shall show that s and
x provide the required nodes. Notice that x and s are on
one side of the minimal s,t cut of capacity v', and y &and
t are on the other. Thus by Lemma 3.1, condensing Y2 to =
single node in the original network does not change v(x,s),
that 18, v(x,s) remains unaffected if all pairs of nodes of

Yé are jJoined by arcs of infinite capacity. Letting bars

denote maximal flow values in the network thus obtained, we have

v(x,s) = v(x,s8),
v(x,y) > v(x,y) = v,
v(y,t) = oo,

v(t,s) > v(t,s) = v'.

Hence from (2.2),
v(x,s) > min [¥(x,y),v(y,t),v(t,8)] =min [V(x,y),v(t,s)],

- and consequently

v(x,8) = V(x,8) > min [v,v'].

Now v' > v since the cut of capacity v' separates x and y.

Hence v(x,s) > V. But equality must hold here because the

cut of capacity v



separates x and s. Thus v(x,s) = v, as was to be shown.

Consequently the capacities of the arcs in the final tree
T actually represent maximal flow values between adjacent
nodes of T. Using (2.2), this implies that

(3.4) v(x,y) >min (v, , V, 5 ey V4 ),
= 1,7 1 i

where il, 12, ce ey 1r are arcs of the path Jjoining x and
y in the final tree T. This, with (3.3), establishes Lemma

3.2 and shows that the construction produces an equivalent tree.

The beauty of the construction resides not only in the
fact that an equivalent tree 1s produced with a minimum of
effort, but also in the kind of equivalent tree: that 1s, one
whose arcs represent the relevant n — 1 cuts in the original
network. There are usually many trees equivalent to a network;
for example, any maximal spanning subtree of the weighted graph
corresponding to the flow function. In fact, it can be shown
that every flow network is equivalent to a chain. But a tree
produced by the construction is more than Jjust equivalent to
the starting network; its structure corresponds preclsely to
v the multi-terminal cut structure of the network. Gomory and
Hu have called such a tree a cut-tree of the network. The same
network may have more than one cut-tree, but in a sense this
can happen only "by accident." That is, if we start with &
connected graph G with arc capacity function ¢, and perturb

i th

its arc capacities by, say, adding € to the 1 arc capacity

for small €, then all cuts have distinct capacities, and the

18



network will have a unique cut-tree. For surely only one set
of cuts (xl,ii), (Xé,ié),..., (xn—l’xh—l) corresponds to

the n — 1 different values taken on by the flow function,
and this 1list of cuts determines a unique cut—tree by the rule:
nodes x and y are Joined by an arc if and only if they 1lie
on opposite sides of precisely one cut in the list; the arc

(x,y) then has capacity equal to this cut capacity.

Example.

To begin the analysis for the network -of Pig. 3.8,
arbitrarily select nodes 1 and 6 for the first flow problem.

This ylields the cut ((1,3}, (2,4,5,6)) represented by the
tree of Pig. 3.9.

(D)—— a9

Fig 39



Taking 1 and 3 for the next flow problem and condensing 2,4,5,6

gives the network

Fig 3 10

and subsequent cut ({1}, {3,2,4,5,6)}). Hence the tree of

Pig. 3.9 becomes

Fig 3.1

Next choose 2 and 4, giving the condensed network

3\

Fig 3.12

and cut ((1,3,2,5), {4,6)). Hence Fig. 3.11 becomes

8 6 _— 6
1 3 2,5 4,6
Q ANy \\_/ \v/

2C



Selecting 2 and 5 for the next flow problem and condensing
yields

Flg. 3.14

with cut ({2}, (1,3,5,4,6}). Thus the tree dilagram at this

stage is

Pig. 3.15

Finally choose 4 and 6 to get the condensed network




22

and cut ((1,2,3,5,4), (6)). Consequently the final cut-—tree
is

Fig. 3.17

In the original network, the cuts picked out by the final

cut—tree are shown in Fig. 3.18.

Pig. 3.18

4. Network synthesis. Given a symmetric function r

defined for all pairs of nodes of an n — node network, we
shall call the network feasible if its flow function v
satisfies



(4.1) v(x,y) > r(x,y), all x,y.

One problem that immediately suggests itself 1s that of con-—
structing a feasible network that minimizes some prescribed
function of the arc capacities, for example

(4.2) z a(x,y)e(x,y).
X,y

Here a(x,y) = a(y,x) may be thought of as the known cost of
installing one unit of arc capacity between x and y. This 1s

a linear program, since the conditions (4.1) can be represented

by writing down 211 1inear inequalities:
(4.3) c(x,X) > max r(x,y),

xeX

yeX

corresponding to all cuts of the network. Of course, for even
moderate values of n, the number of constraints makes it
prohibitive to deal with this program explicitly. However,
Gomory and Hu [ 3] have suggested simplex methods for the
program that do not require an explicit enumeration and usage
of all the constraints (4.3). We shall not discuss this rather
general synthesis problem here, but shall instead look at the
simpler version of the problem when all unit costs a(x,y)
are equal and may be assumed to be 1. For this problem, there
is a remarkably simple and purely combinatorial method of
synthesis.

To facilitate the description of this combinatorial method

of synthesizing a minimal capacity feasible network, we shall



carry along the example of Pig. 4.1, in which the requirements

r(x,y) are as indicated.

let T be a dominant requirement tree, that is, a maximal

spanning subtree of the requirement graph. We may construct
T by the Kruskal algorithm, for instance. (In the example,
a dominant requirement tree is shown by heavy arcs.) Then a
necessary and sufficient condition that a network be feasible
i1s that (4.1) hold for arcs of T. The necessity is of course
obvious. For the sufficiency, suppose (x,z) 4is an out—of-T

arc. Then

(4.4) v(x,z) > min [v(x,y),v(y,u), ..., v(w,2)]
> min [r(x,y),r(y,u), ..., r(w,z)]

> r(x,z).

Here x,y,u, ..., w,z 18 the chain of in-T arcs Joining x
and z.

The synthesis uses only the dominant requirement tree



T. PFirst T is decomposed into a "sum" of a "uniform" re—
quirement tree T plus a remainder (which is a forest of two or
more trees) by subtracting the smallest in-T requirement from
all other in-T requirements. For example, the dominant re-—

quirement tree of Pig. 4.1 decomposes into

w

O— > + O

Fig. 4.2

Each remaining non—uniform subtree is then further decomposed
in the same way, and the process 1s repeated until T has been
expressed as a sum of uniform requirement subtrees. 1In the

example, this is achieved in one more step:

+ +

Fig. 4.3



Each uniform tree of this decomposition is then synthesized
by a cycle through its nodes (in any order), each arc of which
has capacity equal to 1/2 of the (uniform) requirement. (Clearly
such a cycle will satisfy all requirements of a uniform tree.)
The resulting cycles are then superposed to form a network G*,
i.e. corresponding arc capacities are added. For example, doing

this for Fig. 4.3 could give the cycles

1:2:3:4,5 (capacity 2.5)

1,2,3 (capacity .5)
4,5 (a single 1link of capacity 2)
1,3 (a2 single 1ink of capacity 3)

and resulting network G* shown in Pig. 4.4,

Pig. 4.4

Theorem 4.1. The network G* 1is a feasible minimal

capaclity network.

Proof. To see that G* 1s feasible, it suffices to show

that all requirements of the dominant tree T are met. This



follows at once from the observations (a) a uniform requirement
tree having requirement ¢ 1s synthesized by a cycle through
1ts nodes, each arc of which has capacity €/2, (b) 1f two
networks G' and G" are superposed to form G, then
vix,y) > vi(x,y) + v'(x,y).

It remains to prove that G* is minimal, 1.e. the sum of

the arc capacities of G* 1is no longer than the corresponding

sum for any feasible network. To this end, first define numbers,

one for each node x,

(4.5) u(x) = max v(x,y)
yx

Thus u(x) 1s the longest flow requirement out of X. (The
same u(x) results if the maximum in (4.5) is taken only over
those y adjacent to x 1in the dominant requirement tree, as
will be seen later on.) Now any feasible network with node

set N and capacity function c¢ must have

(4.6) c(x,N) > u(x),

since (x,N) 1is a cut separating x from all other nodes, and

hence for any feasible network,

(4.7) c(N,N) > u(N).

We shall show that the lower bound u(N) in (4.7) is achieved
by the network G*, that is,

27
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(4.8) c*(N,N) = u(N),

whence G* 18 a minimal capacity network.

To establish (4.8), first define u'(x) as in (4.5)
except that the maximum is taken over in-T arcs emanating from
X. Then u'(x) < u(x). But it is also clear from the con—

struction of G* that

(4°9) C*(X,N) - u'(x):
and hence
(4.10) c*(N,N) = u'(N) < u(N).

Hence c*(N,N) = u(N), as was to be shown. This completes
the proof of Theorem 4.1.

It follows from this argument that u'(x) = u(x), as was
asserted earlier. This fact can also be seen directly without
difficulty.

A consequence of Theorem 4.1 1s: the linear program (4.2),
(4.3), with all unit costs a(x,y) = 1, always has an optimal

solution in which arc capacities are either integers or half-
integers, provided the requirements are integers.

In general, there i1s a super—abundance of minimal capacity
networks that can be obtained from the construction, since a
uniform requirement tree can be synthesized by any cycle through
its nodes. (Of course, if there are two distinct minimal capacity

networks, there are infinitely many, because any convex combination



of two such is also minimal.) Among all of these it turns out

that there 1s one whose flow function dominates all others, that

is, there is a feasible, minimal capacity network & such that

(4.11) vix,y) > v(x,y), all x,y,

where v(x,y) 48 the flow function for any other feasible,
minimal capacity network. To construct &, one can go back
to the originsal requirement network and revise each r(x,y)

upward to

(4.12) F(x,y) = min [u(x),u(y)].

Observe that this does not change the lower bound u(N), since
u(x) = u(x). If the requirements(4.12) are used in the synthesis,

the network @ thereby obtained meets all requirements exactly:

(4'13) V(x:y) - i(x‘vy)'

For suppose u(x) < u(y) and strict inequality held in (4.13).
Then

c(x,N) > V(x,y) > u(x) = u(x),

contradicting the fact that <¢(N,N) 1s equal to the lower bound
u(N).

In the same way, one can see that G has the dominance
property (4.11). For if there were a feasible minimal network
G with



v(x,y) > v(x,y) = r(x,y)
and r(x,y) = u(x), say, then
c(x,N) > v(x,y) > u(x),

and the same contradiction results. In other words, more flow
between any pair of nodes can be gotten only by increasing

total network capacity.

30
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